Skip to main content
Log in

Adsorption behavior of amino functionalized MCM-41 on chlorogenic acid from Eucommia ulmoides leaves

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this study, an amino-functionalized MCM-41 mesoporous material was prepared via hydrothermal method for the adsorption of chlorogenic acid from Eucommia ulmoides leaf extracts. The as prepared NH2-MCM-41 was characterized by X-ray diffraction, FT-IR spectroscopy and N2 adsorption–desorption isotherms. The results show that have good mesoporous structure. The batch experiments showed that adsorption process was more in line with the pseudo-second order kinetic model, which indicated the chemisorption played an important role in the adsorption process; Isothermal adsorption results showed that the adsorption of chlorogenic acid by NH2-MCM-41 was more consistent with Langmuir model, indicating that multilayer adsorption process occurred. Thermodynamic analyses demonstrated that the chlorogenic acid adsorption on NH2-MCM-41 abided by a spontaneous and exothermic procedure with entropy decreased. The purity of chlorogenic acid could be increased from 17.36 to 85.60% under the optimal conditions t = 9 h, temperature = 333 K, pH 6. These results indicated that NH2-MCM-41 is a promising adsorbent for the separation and purification of chlorogenic acid from Eucommia ulmoides leaf extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. M. Rutkowska, E. Balcerczak, R. Wiechowski, M. Dubicka, M.A. Olszewska, Seasonal variation in phenylpropanoid biosynthesis and in vitro antioxidant activity of Sorbus domestica leaves: harvesting time optimisation for medicinal application. Ind. Crop. Prod. 156, 112858 (2020). https://doi.org/10.1016/j.indcrop.2020.112858

    Article  CAS  Google Scholar 

  2. X. Chen, M. Liu, P.F. Zhang, S.S.Y. Leung, J. Xia, Membrane-permeable antibacterial enzyme against multidrug-resistant Acinetobacter baumannii. Acs. Infect. Dis. 7, 2192–2204 (2021). https://doi.org/10.1021/acsinfecdis.1c00222

    Article  CAS  Google Scholar 

  3. R. Li, R. Ouda, C. Kimura, R. Narita, T. Watanabe, Conversion of beech wood into antiviral lignin-carbohydrate complexes by microwave acidolysis. ACS Sustain. Chem. Eng. 9, 9248–9256 (2021). https://doi.org/10.1021/acssuschemeng.1c01450

    Article  CAS  Google Scholar 

  4. A.C.C.M. Castro, F.B. Oda, M.G.J. Almeida-Cincotto, M.G. Davanço, B.G. Chiari-Andreo, R.M.B. Cicarelli, R.G. Peccinini, G.J. Zocolo, P.R.V. Ribeiro, Green coffee seed residue: a sustainable source of antioxidant compounds. Food Chem. 246, 48–57 (2018). https://doi.org/10.1016/j.foodchem.2017.10.153

    Article  CAS  Google Scholar 

  5. J. Alamed, W. Chaiyasit, D.J. Mcclements, E.A. Decker, Relationships between free radical scavenging and antioxidant activity in foods. J. Agric. Food. Chem. 57, 2969–2976 (2009). https://doi.org/10.1021/jf803436c

    Article  CAS  Google Scholar 

  6. J.P. Cejas, A.S. Rosa, M.A. Nazareno, E.A. Disalvo, M.A. Frias, Interaction of chlorogenic acid with model lipid membranes and its influence on antiradical activity. BBA Biomembr. 1863, 183484 (2021). https://doi.org/10.1016/j.bbamem.2020.183484

    Article  CAS  Google Scholar 

  7. H.J. Kwon, J.Y. Chung, J.Y. Kim, O. Kwon, Comparison of 1-deoxynojirimycin and aqueous mulberry leaf extract with emphasis on postprandial hypoglycemic effects: in vivo and in vitro studies. J. Agric. Food. Chem. 59, 3014–3019 (2011). https://doi.org/10.1021/jf103463f

    Article  CAS  Google Scholar 

  8. A. Rodriguez-Mateos, T. Cifuentes-Gomez, S. Tabatabaee, C. Lecras, J.P.E. Spencer, Procyanidin, anthocyanin, and chlorogenic acid contents of highbush and lowbush blueberries. J. Agric. Food. Chem. 60, 5772–5778 (2012). https://doi.org/10.1021/jf203812w

    Article  CAS  Google Scholar 

  9. H. Jiang, J. Li, L. Chen, Z. Wang, Adsorption and desorption of chlorogenic acid by macroporous adsorbent resins during extraction of Eucommia ulmoides leaves. Ind. Crop. Prod. 149, 112336 (2020). https://doi.org/10.1016/j.indcrop.2020.112336

    Article  CAS  Google Scholar 

  10. G.T. Qin, J. Ma, W. Wei, J.J. Li, F.Q. Yue, The enrichment of chlorogenic acid from Eucommia ulmoides leaves extract by mesoporous carbons. J. Chromatogr. B 6, 1087–1088 (2018). https://doi.org/10.1016/j.jchromb.2018.04.036

    Article  CAS  Google Scholar 

  11. Y.L. Liu, J. Guo, Z.B. Xiao, K. Song, Adsorption of Chelerythrine from Toddalia asiatica (L.) Lam by ZSM-5. Adv. Polym. Technol. 2020, 1–9 (2020). https://doi.org/10.1155/2020/9408921

    Article  CAS  Google Scholar 

  12. N.A. Atiyah, T.M. Albayati, M.A. Atiya, Functionalization of mesoporous MCM-41 for the delivery of curcumin as an anti-inflammatory therapy. Adv. Powder. Technol. 33, 103417 (2022). https://doi.org/10.1016/j.apt.2021.103417

    Article  CAS  Google Scholar 

  13. H.J. Al-Jaaf, N.S. Ali, S.M. Alardhi, T.M. Albayati, Implementing eggplant peels as an efficient bio-adsorbent for treatment of oily domestic wastewater. Desalin. Water Treat. 245, 226–237 (2022). https://doi.org/10.5004/dwt.2022.27986

    Article  CAS  Google Scholar 

  14. W.Y. Lin, Q. Cai, W.Q. Pang, Y. Yue, Preparation of aluminosilicate MCM-41 in desirable forms via a novel co-assemble route. Chem. Commun. 22, 2473–2474 (1998). https://doi.org/10.1039/a807786j

    Article  Google Scholar 

  15. V. Kocherbitov, V. Alfredsson, Hydration of MCM-41 studied by sorption calorimetry. J. Phys. Chem. C. 111, 12906–12913 (2007). https://doi.org/10.1021/jp072474r

    Article  CAS  Google Scholar 

  16. B. Zhang, T. Wu, D.J. Sun, W.X. Chen, G.R. Li, Y.J. Li, NH2-MCM-41 supported on nitrogen-doped graphene as bifunctional composites for removing phenol compounds: synergistic effect between catalytic degradation and adsorption. Carbon 147, 312–322 (2019). https://doi.org/10.1016/j.Carbon.2019.02.084

    Article  CAS  Google Scholar 

  17. S.O. Akpotu, B. Moodley, Application of as-synthesised MCM-41 and MCM-41 wrapped with reduced graphene oxide/graphene oxide in the remediation of acetaminophen and aspirin from aqueous system. J. Environ. Manag. 209, 205–215 (2017). https://doi.org/10.1016/j.jenvman.2017.12.037

    Article  CAS  Google Scholar 

  18. S.L. Wu, X.D. Zhao, Y.H. Li, C.T. Zhao, Q.J. Du, J.K. Sun, Y.H. Wang, X.J. Peng, Y.Z. Xia, Z.H. Wang, L.H. Xia, Adsorption of ciprofloxacin onto biocomposite fibers of graphene oxide/calcium alginate. Chem. Eng. J. 230, 389–395 (2013). https://doi.org/10.1016/j.cej.2013.06.072

    Article  CAS  Google Scholar 

  19. E.H. Khader, T.J. Mohammed, T.M. Albayati, Comparative performance between rice husk and granular activated carbon for the removal of azo tartrazine dye from aqueous solution. Desalin. Water Treat. 229, 372–383 (2021). https://doi.org/10.5004/dwt.2021.27374

    Article  CAS  Google Scholar 

  20. L.T. Tran, H.V. Tran, T.D. Le, G.L. Bach, L.D. Tran, Studying Ni (II) adsorption of magnetite/graphene oxide/chitosan nanocomposite. Adv. Polym. Technol. 2019, 1–9 (2019). https://doi.org/10.1155/2019/8124351

    Article  CAS  Google Scholar 

  21. G.P. Hao, W.C. Li, S. Wang, S.F. Zhang, A.H. Lu, Tubular structured ordered mesoporous carbon as an efficient sorbent for the removal of dyes from aqueous solutions. Carbon 48, 3330–3339 (2019). https://doi.org/10.1016/j.carbon.2010.05.011

    Article  CAS  Google Scholar 

  22. F. Zhang, J. Lan, Z.S. Zhao, Y. Yang, R.Q. Tan, W.J. Song, Removal of heavy metal ions from aqueous solution using Fe3O4-SiO2-poly(1,2-diaminobenzene) core-shell sub-micron particles. J. Colloid. Interface Sci. 387, 205–212 (2012). https://doi.org/10.1016/j.jcis.2012.07.066

    Article  CAS  Google Scholar 

  23. W.P. Yang, L. Zhou, J.G. Yu, P. Ding, X.Q. Chen, F.P. Jiao, Preparation of diamine modified mesoporous silica on multiwalled carbon nanotubes for the adsorption of heavy metals in aqueous solution. Appl. Surf. Sci. 282, 38–45 (2013). https://doi.org/10.1016/j.apsusc.2013.05.028

    Article  CAS  Google Scholar 

  24. M. Dinari, R. Soltani, G. Mohammadnezhad, Kinetics and thermodynamic study on novel modified-mesoporous silica MCM-41/polymer matrix nanocomposites: effective adsorbents for trace Cr VI removal. J. Chem. Eng. Data 62, 2316–2329 (2017). https://doi.org/10.1021/acs.jced.7b00197

    Article  CAS  Google Scholar 

  25. U.G. Singh, R.T. Williams, R.K. Hallam, G.C. Allen, Exploring the distributionof copper-Schiff base complex covalently anchored onto the surface of mesoporous MCM-41 silica. J. Solid. State. Chem. 178, 3405–3413 (2005). https://doi.org/10.1016/j.jssc.2005.08.023

    Article  CAS  Google Scholar 

  26. H.J. Wang, D.W. Rao, M.J. Meng, L. Liu, Y.H. Feng, Modulating depth of 1,2-propanediol oxidation over La (III) doped MCM-41 supported binary Pd and Bi nanoparticles for selective production of C3 carbonyl compounds. Appl. Surf. Sci. 554, 149528 (2021). https://doi.org/10.1016/j.apsusc.2021.149528

    Article  CAS  Google Scholar 

  27. S. Sert, M. Eral, Uranium adsorption studies on aminopropyl modified mesoporous sorbent (NH2-MCM-41) using statistical design method. J. Nucl. Mater. 406, 285–292 (2010). https://doi.org/10.1016/j.jnucmat.2010.08.024

    Article  CAS  Google Scholar 

  28. P. Pal, S.K. Rastogi, C.M. Gibson, D.E. Aston, A.L. Branen, T.B. Bitterwolf, Fluorescence sensing of zinc (II) using ordered mesoporous silica material (MCM-41) functionalized with N-(quinolin-8-yl)-2-[3-(triethoxysilyl) propylamino] acetamide. ACS Appl. Mater. Interfaces 3, 279–286 (2011). https://doi.org/10.1021/am100923x

    Article  CAS  Google Scholar 

  29. A.A. Sabri, T.M. Albayati, R.A. Alazawi, Synthesis of ordered mesoporous SBA-15 and its adsorption of methylene blue. J. Korean Chem. Eng. 32, 1835–1841 (2015). https://doi.org/10.1007/s11814-014-0390-y

    Article  CAS  Google Scholar 

  30. N. Li, W.Y. Cheng, Y.Z. Pan, Adsorption of naphthalene on modified zeolite from aqueous solution. J. Environ. Prot. Ecol. 4, 416–425 (2017). https://doi.org/10.4236/jep.2017.84030

    Article  CAS  Google Scholar 

  31. S. Sharma, G. Sharma, A. Kumar, T.S. AlGarni, M. Naushad, Z.A. ALOthman, F.J. Stadler, Adsorption of cationic dyes onto carrageenan and itaconic acid-based superabsorbent hydrogel: synthesis, characterization and isotherm analysis. J. Hazard Mater. 421, 126729 (2022). https://doi.org/10.1016/j.jhazmat.2021.126729

    Article  CAS  Google Scholar 

  32. F. Zhou, S.H. Huang, X. Liu, J. Feng, Q. Liu, Z.W. Wang, C.C. Li, Y.L. Xu, Adsorption kinetics and thermodynamics of rare earth on modified Montmorillonite. Colloid. Surf. A 627, 127063 (2022). https://doi.org/10.1016/j.colsurfa.2021.127063

    Article  CAS  Google Scholar 

  33. P.C. Sun, Y. Liu, Y.T. Yi, H.J. Li, P. Fan, C.H. Xia, Preliminary enrichment and separation of chlorogenic acid from Helianthus tuberosus L. leaves extract by macroporous resins. Food Chem. 168, 55–62 (2015). https://doi.org/10.1016/j.foodchem.2014.07.038

    Article  CAS  Google Scholar 

  34. T.A. Khan, E.A. Khan, Shahjahan, removal of basic dyes from aqueous solution by adsorption onto binary iron-manganese oxide coated kaolinite: non-linear isotherm and kinetics modeling. Appl. Clay. Sci. 107, 70–77 (2015). https://doi.org/10.1016/j.clay.2015.01.005

    Article  CAS  Google Scholar 

  35. R.B. Yu, Z.C. Wu, High adsorption for ofloxacin and reusability by the use of ZIF-8 for wastewater treatment. Micropor. Mesopor. Mat. 308, 110494 (2020). https://doi.org/10.1016/j.micromeso.2020.110494

    Article  CAS  Google Scholar 

  36. H. Javadian, M. Taghavi, Application of novel Polypyrrole/thiol-functionalized zeolite Beta/MCM-41 type mesoporous silica nanocomposite for adsorption of Hg2+ from aqueous solution and industrial wastewater: kinetic, isotherm and thermodynamic studies. Appl. Surf. Sci. 289, 487–494 (2014). https://doi.org/10.1016/j.apsusc.2013.11.020

    Article  CAS  Google Scholar 

  37. E.C. Nnadozie, P.A. Ajibade, Adsorption, kinetic and mechanistic studies of Pb(II) and Cr(VI) ions using APTES functionalized magnetic biochar. Microporous Mesoporous Mater. 309, 110573 (2020). https://doi.org/10.1016/j.micromeso.2020.110573

    Article  CAS  Google Scholar 

  38. P.F. Li, L.T. Qin, T. Wang, L.X. Dai, H. Li, J.X. Jiang, J.Y. Zhou, H. Li, X.Q. Cheng, F.H. Lei, Preparation and adsorption characteristics of rosin-based polymer microspheres for berberine hydrochloride and separation of total alkaloids from coptidis rhizoma. Chem. Eng. J. 392, 123707 (2020). https://doi.org/10.1016/j.cej.2019.123707

    Article  CAS  Google Scholar 

  39. S.M. Alardhi, J.M. Alrubaye, T.M. Albayati, Removal of methyl green dye from simulated waste water using hollow fiber ultrafiltration membrane. M. S. E. 928, 052020 (2020). https://doi.org/10.1088/1757-899X/928/5/052020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the reviewers for their valuable comments to improve the manuscript. This research project was financially supported by the National Natural Sciences Foundation of China (No. 32060326).

Author information

Authors and Affiliations

Authors

Contributions

XX is the first author of this study. KS is the corresponding author of this study, and he is supervisor of this project. XX and KS contributed to the study conception and design. JG and SL prepared Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. Material preparation, data collection and analysis were performed by XX, KS, JH and XZ. The first draft of the manuscript was written by XX and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ke Song.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Song, K., Guo, J. et al. Adsorption behavior of amino functionalized MCM-41 on chlorogenic acid from Eucommia ulmoides leaves. J Porous Mater 30, 71–81 (2023). https://doi.org/10.1007/s10934-022-01323-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01323-0

Keywords

Navigation