Skip to main content
Log in

Reduced graphene oxide modified melamine formaldehyde (rGO@MF) superhydrophobic sponge for efficient oil–water separation

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The present work describes the fabrication of superhydrophobic and superoleophilic reduced graphene oxide coated melamine formaldehyde (rGO@MF) based sponge for efficient removal of oils and organic solvents from oil–water mixture. The rGO@MF sponge was synthesized using commercially available melamine sponge, GO solution, and hydrazine hydrate by hydrothermal treatment. Phase and microstructural analysis show that as-synthesized rGO@MF possesses ultrathin coating of rGO sheets onto porous MF sponge. Moreover, as-prepared rGO@MF sponge exhibited contact angle (CA) ~ 162° and 0° on a sessile water and oil droplet, respectively. Oil water separation test shows that rGO@MF sponge can remove ~ 90–120 times oils by its weight. Moreover, repeated sorption—mechanical squeezing test of oil–water mixture sheds light that rGO@MF sponge is fully reusable and ~ 40–50% oil can be recovered after 10 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Q. Ma, H. Cheng, A.G. Fane, R. Wang, H. Zhang, Small 12, 2186–2202 (2016). https://doi.org/10.1002/smll.201503685

  2. K.C. Kemp, H. Seema, M. Saleh, N.H. Le, K. Mahesh, V. Chandra, K.S. Kim, Nanoscale 5, 3149–3171 (2013). https://doi.org/10.1039/C3NR33708A

  3. A.S. Adeleye, J.R. Conway, K. Garner, Y. Huang, Y. Su, A.A. Keller, Chem. Eng. J. 286,640–662 (2016). https://doi.org/10.1016/j.cej.2015.10.105

  4. R. Edwards, I. White, Inter. Oil Spill Conf. Proc. 1999, 97–102 (1999) https://doi.org/10.7901/2169-3358-1999-1-97

  5. K.A. Waylen, E.J. Hastings, E.A. Banks, K.L. Holstead, R.J. Irvine, K.L. Blackstock, Conser. Bio. 28,1215–1224 (2014). https://doi.org/10.1111/cobi.12331

  6. J. Short, Energy Sources 25, 509–517 (2003). https://doi.org/10.1080/00908310390195589

  7. S. Gupta, N.-H. Tai, J. Mater. Chem. A 4, 1550–1565 (2016). https://doi.org/10.1039/C5TA08321D

  8. C. Campagna, F.T. Short, B.A. Polidoro, R. McManus, B.B. Collette, N.J. Pilcher, Y.S.d.. Mitcheson, S.N. Stuart, K.E. Carpenter, Bioscience 61, 393–397 (2011). https://doi.org/10.1525/bio.2011.61.5.8

  9. E.B. Kujawinski, M.C. Kido Soule, D.L. Valentine, A.K. Boysen, K. Longnecker, M.C. Redmond, Environ. Sci. Tech. 45, 1298–1306 (2011). https://doi.org/10.1021/es103838p

  10. H.M. Choi, R.M. Cloud, Environ. Sci. Tech 26, 772–776 (1992)

    Article  CAS  Google Scholar 

  11. A.B. Nordvik, J.L. Simmons, K.R. Bitting, A. Lewis, T. Strøm-Kristiansen, Spill Sci. Tech. Bull. 3, 107–122 (1996). https://doi.org/10.1016/S1353-2561(96)00021-7

  12. V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, RSC Adv. 2,6380–6388 (2012). https://doi.org/10.1039/C2RA20340E

  13. A.M.A. Pintor, V.J.P. Vilar, C.M.S. Botelho, R.A.R. Boaventura, Chem. Eng. J.297, 229–255 (2016). https://doi.org/10.1016/j.cej.2016.03.121

  14. M.M. Radetić, D.M. Jocić, P.M. Jovančić, Z.L. Petrović, H.F. Thomas, Environ. Sci. Tech.37,1008–1012 (2003). https://doi.org/10.1021/es0201303

  15. Y. Gao, Y.S. Zhou, W. Xiong, M. Wang, L. Fan, H. Rabiee-Golgir, L. Jiang, W. Hou, X. Huang, L. Jiang, J.-F. Silvain, Y.F. Lu, ACS Appli. Mater. Interfaces 6, 5924–5929 (2014). https://doi.org/10.1021/am500870f

  16. Y. Cheng, P. Xu, W. Zeng, C. Ling, S. Zhao, K. Liao, Y. Sun, A. Zhou, J. Environ. Chem. Eng. 5, 1957–1963 (2017). https://doi.org/10.1016/j.jece.2017.04.005

  17. M.H. Sorour, H.A. Hani, G.A. Al-Bazedi, A.M. EL-Rafei, J. Porous Mater. 23,1401–1409 (2016). https://doi.org/10.1007/s10934-016-0200-5

  18. S.C. Amico, Matéria (Rio de Janeiro)15,355–363 (2010). http://dx.doi.org/10.1590/S1517-70762010000200037

  19. M.O. Adebajo, R.L. Frost, J.T. Kloprogge, O. Carmody, S. Kokot, J. Porous Mater. 10, 159–170 (2003). https://doi.org/10.1023/A:1027484117065

  20. M. Obaid, N.A.M. Barakat, O.A. Fadali, M. Motlak, A.A. Almajid, K.A. Khalil, Chem. Eng. J. 259, 449–456 (2015). https://doi.org/10.1016/j.cej.2014.07.095

  21. X. Ding, R. Wang, X. Zhang, Y. Zhang, S. Deng, F. Shen, X. Zhang, H. Xiao, L. Wang, Marine Pollu. Bull. 81, 185–190, (2014). https://doi.org/10.1016/j.marpolbul.2014.01.056

  22. C.F. Wang, W.N. Wang, S.Y. Yang, L.T. Chen, H.Y. Tsai, International Conference on Electronics Packaging, (2016). pp. 673–676. https://doi.org/https://doi.org/10.1109/ICEP.2016.7486916

  23. X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, D. Wu, Adv. Mater. 22, 617–621 (2010). https://doi.org/10.1002/adma.200902986

  24. A. Siddiqa, A. Shahid, R. Gill, J. Environ. Chem. Eng. 3, 892–897 (2015). https://doi.org/10.1016/j.jece.2015.02.026

  25. X. Di, W. Zhang, D. Zang, F. Liu, Y. Wang, C. Wang, Chem. Eng. J. 306, 53–59 (2016) https://doi.org/10.1016/j.cej.2016.06.137

  26. Y. Yang, H. Yi, C. Wang, A.C.S. Sustain, Chem. Eng. 3, 3012–3018 (2015). https://doi.org/10.1021/acssuschemeng.5b01187

  27. H. Liu, Z. Liu, M. Yang, Q. He, J. Appl. Poly. Sci. 130, 3530–3536 (2013). https://doi.org/10.1002/app.39406

  28. O. Oribayo, X. Feng, G.L. Rempel, Q. Pan, Chem. Eng. J. 323, 191–202 (2017). https://doi.org/10.1016/j.cej.2017.04.054

  29. Q. Ke, Y. Jin, P. Jiang, J. Yu, Langmuir 30, 13137–13142 (2014). https://doi.org/10.1021/la502521c

  30. J. Chen, H. You, L. Xu, T. Li, X. Jiang, C.M. Li, J. Colloid Interface Sci. 506, 659–668 (2017). https://doi.org/10.1016/j.jcis.2017.07.066

  31. N. Cao, B. Yang, A. Barras, S. Szunerits, R. Boukherroub, Chem. Eng. J. 307, 319–325 (2017). https://doi.org/10.1016/j.cej.2016.08.105

  32. O. Oribayo, X. Feng, G.L. Rempel, Q. Pan, Chem. Eng. Sci. 160, 384–395 (2017). https://doi.org/10.1016/j.ces.2016.11.035

  33. V.H. Pham, J.H. Dickerson, ACS Appl. Mater. Interfaces 6, 14181–14188 (2014). https://doi.org/10.1021/am503503m

  34. Y. Liu, J. Ma, T. Wu, X. Wang, G. Huang, Y. Liu, H. Qiu, Y. Li, W. Wang, J. Gao, ACS Appl. Mater. Interfaces 5, 10018–10026 (2013). https://doi.org/10.1021/am4024252

  35. Y. He, Y. Liu, T. Wu, J. Ma, X. Wang, Q. Gong, W. Kong, F. Xing, Y. Liu, J. Gao, J. Hazard. Mater. 260, 796–805 (2013). https://doi.org/10.1016/j.jhazmat.2013.06.042

  36. H. Zhu, S. Yang, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Adv. Mat. Inter. 3, (2015). https://doi.org/10.1002/admi.201500683

  37. A. Stolz, S. Le Floch, L. Reinert, S.M. Ramos, J. Tuaillon-Combes, Y. Soneda, P. Chaudet, D. Baillis, N. Blanchard, L. Duclaux, Carbon 107, 198–208 (2016). https://doi.org/10.1016/j.carbon.2016.05.059

  38. J. Ge, H.-Y. Zhao, H.-W. Zhu, J. Huang, L.-A. Shi, S.-H. Yu, Adv. Mat 28, 10459–10490 (2016)

    Article  CAS  Google Scholar 

  39. C.-H. Deng, J.-L. Gong, P. Zhang, G.-M. Zeng, B. Song, H.-Y. Liu, J. Colloid Interface Sci. 488, 26–38 (2017). https://doi.org/10.1016/j.jcis.2016.10.078

  40. Y. Zhou, Y. Wang, T. Liu, G. Xu, G. Chen, H. Li, L. Liu, Q. Zhuo, J. Zhang, C. Yan, Sci. Rep. 7, 45065 https://doi.org/ (2017).https://doi.org/10.1038/srep45065

  41. L. Shahriary, A.A. Athawale, Int. J. Renew. Energy Environ. Eng 2, 58–63 (2014)

    Google Scholar 

  42. N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.-W. Liu, C.H. Voon, Proc. Eng. 184 469–477 (2017). https://doi.org/10.1016/j.proeng.2017.04.118

  43. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339–1339 (1958). https://doi.org/10.1021/ja01539a017

  44. B. Ge, Z. Zhang, X. Zhu, X. Men, X. Zhou, Q. Xue, Compos. Sci. Tech. 102, 100–105 (2014). https://doi.org/10.1016/j.compscitech.2014.07.020

  45. G. Lamour, A. Hamraoui, A. Buvailo, Y. Xing, S. Keuleyan, V. Prakash, A. Eftekhari-Bafrooei, E. Borguet, J. Chem. Educ. 87,1403–1407 (2010). https://doi.org/10.1021/ed100468u

  46. S. Abdolhosseinzadeh, H. Asgharzadeh, H. Seop Kim, Sci. Rep. 5, 10160 (2015). https://doi.org/10.1038/srep10160

  47. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Prog. Mater. Sci. 56, 1178–1271 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.003

  48. C. Nethravathi, M. Rajamathi, Carbon 46, 1994–1998 (2008). https://doi.org/10.1016/j.carbon.2008.08.013

  49. D. Chen, H. Feng, J. Li, Chem. Rev. 112, 6027–6053 (2012). https://doi.org/10.1021/cr300115g

  50. R.S. Edwards, K.S. Coleman, Nanoscale 5, 38–51 (2013). https://doi.org/10.1039/C2NR32629A

  51. P. Larkin, M. Makowski, N. Colthup, L. Flood, Vibr. Spect. 17, 53–72 (1998). https://doi.org/10.1016/S0924-2031(98)00015-0

  52. Q. Zhu, Q. Pan, F. Liu, J. Chem. Phys. C 115, 17464–17470 (2011). https://doi.org/10.1021/jp2043027

  53. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126–1130 (1970). https://doi.org/10.1063/1.1674108

  54. K. Krishnamoorthy, M. Veerapandian, K. Yun, S.-J. Kim, Carbon 53, 38–49 (2013). https://doi.org/10.1016/j.carbon.2012.10.013

  55. V.B. Mohan, R. Brown, K. Jayaraman, D. Bhattacharyya, Mater. Sci. Eng. 193, 49–60 (2015). https://doi.org/10.1016/j.mseb.2014.11.002

  56. S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Carbon 48, 4466–4474 (2010). https://doi.org/10.1016/j.carbon.2010.08.006

  57. Q. Zhu, Y. Chu, Z. Wang, N. Chen, L. Lin, F. Liu, Q. Pan, J. Mater. Chem. A 1, 5386–5393 (2013). https://doi.org/10.1039/C3TA00125C

  58. H. Bi, X. Xie, K. Yin, Y. Zhou, S. Wan, L. He, F. Xu, F. Banhart, L. Sun, R.S. Ruoff, Adv. Funct. Mater. 22, 4421–4425 (2012). https://doi.org/10.1002/adfm.201200888

  59. I.A. Larmour, S.E. Bell, G.C. Saunders, Angew. Chem. 119, 1740–1742 (2007). https://doi.org/10.1002/anie.200604596

  60. S. Wang, Y. Zhang, N. Abidi, L. Cabrales, Langmuir 25, 11078–11081 (2009). https://doi.org/10.1021/la901402f

  61. P. Mishra, K. Balasubramanian, RSC Adv.4, 53291–53296 (2014). https://doi.org/10.1039/C4RA07410F

  62. A.A. Nikkhah, H. Zilouei, A. Asadinezhad, A. Keshavarz, Chem. Eng. J. 262, 278–285 (2015). https://doi.org/10.1016/j.cej.2014.09.077

  63. L. Zhang, H. Li, X. Lai, X. Su, T. Liang, X. Zeng, Chem. Eng. J.316, 736–743 (2017). https://doi.org/10.1016/j.cej.2017.02.030

  64. Z. Yaneva, B. Koumanova, J. Colloid Interface Sci. 293, 303–311, (2006). https://doi.org/10.1016/j.jcis.2005.06.069

  65. X. Gui, H. Li, K. Wang, J. Wei, Y. Jia, Z. Li, L. Fan, A. Cao, H. Zhu, D. Wu, Acta Mater. 59, 4798–4804 (2011). https://doi.org/10.1016/j.actamat.2011.04.022

  66. Y. Pan, K. Shi, C. Peng, W. Wang, Z. Liu, X. Ji, ACS Appl. Mater. Interfaces 6, 8651–8659 (2014). https://doi.org/10.1021/am5014634

  67. I. Ovid’ko, Rev. Adv. Mater. Sci 34, 1–11 (2013)

    Google Scholar 

  68. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996

  69. C. Gómez-Navarro, M. Burghard, K. Kern, Nano lett. 8, 2045–2049 (2008). https://doi.org/10.1021/nl801384y

  70. J. Li, C. Xu, Y. Zhang, R. Wang, F. Zha, H. She, J. Mater. Chem. A 4, 15546–15553 (2016). https://doi.org/10.1039/C6TA07535E

  71. C.-F. Wang, S.-J. Lin, ACS Appl. Mater. Interfaces 5, 8861–8864 (2013). https://doi.org/10.1021/am403266v

  72. Z. Wu, Y. Li, L. Zhang, Y. Zhong, H. Xu, Z. Mao, B. Wang, X. Sui, RSC Adv. 7, 20147–20151 (2017). https://doi.org/10.1039/C7RA00847C

Download references

Acknowledgements

Authors gratefully acknowledge the partial financial support from Department of Science and Technology, Science and Engineering Research Board (DST-SERB) (Grant Number ECR/2016/000959).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Saha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1628 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, P., Dashairya, L. Reduced graphene oxide modified melamine formaldehyde (rGO@MF) superhydrophobic sponge for efficient oil–water separation. J Porous Mater 25, 1475–1488 (2018). https://doi.org/10.1007/s10934-018-0560-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0560-0

Keywords

Navigation