Skip to main content
Log in

Low-temperature ozone decomposition, CO and iso-propanol combustion on silver supported MCM-41 and silica

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Silver modified (5 and 2 wt% loading) mesoporous molecular sieves (H-MCM-41, with Si/Al ratio 20, 40 and 50) and silica were synthesized by incipient wetness impregnation and ion-exchange methods. The obtained catalysts were characterized by different techniques (ICP, XRD, XRF, SEM, FTIR and nitrogen physisorption) and they were tested in heterogeneous catalytic decomposition of ozone and oxidation reactions involving ozone at ambient temperature. All the mesoporous catalysts have very high catalytic activities towards ozone decomposition at room temperature and they do not reveal any deactivation with the time on stream. The activities of the catalysts are enhanced upon increasing the amount of supported silver, decreasing the support acidity and modifying the catalyst with some additional metal having basic properties, such as Ce. The most active catalyst in the reaction of ozone decomposition—5Ag-H-MCM-41-50, shows also high activity at ambient temperature in the oxidation of CO and iso-propanol with ozone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.F. Yu, Z.B. Hu, M. Liu, H.L. Yang, Q.X. Kong, Y.H. Liu, Int. J. Refrig. 32, 3–20 (2009)

    Article  Google Scholar 

  2. S. Wang, H.M. Ang, M.O. Tade, Environ. Int. 33, 694–705 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. P. Hunter, S.T. Oyama, Control of Volatile Organic Compound Emissions: Conventional and Emerging Technologies. (Wiley-Interscience, New York, 2000)

    Google Scholar 

  4. D. Shahidi, R. Roy, A. Azzouz, Appl. Catal. B 174–175, 277–292 (2015)

    Article  CAS  Google Scholar 

  5. W. Li, H. Liu, X. Ma, S. Mo, S. Li, Y. Chen, J. Porous Mater. 1–11 (2017)

  6. C. He, Q. Shen, M. Liu, J. Porous Mater. 21(5), 551–563 (2014)

    Article  CAS  Google Scholar 

  7. A. Naydenov, D. Mehandjiev, Appl. Catal. A 97, 17–22 (1993)

    Article  CAS  Google Scholar 

  8. K. Koike, M. Nifuku, K. Izumi, S. Nakamura, S. Fujiwara, S. Horiguchi, J. Loss Prev. Process Ind. 18, 465–468 (2005)

    Article  Google Scholar 

  9. P. Hunter, S. Oyama, Control of Volatile Compound Emissions, Conventional and Emerging Technologies. (Wiley, New York, 2000)

    Google Scholar 

  10. D. Maksudov, F. Ismagilov, I. Khairulin, S. Khairulin, Z. Izmagilov, Eurasian Chem. Technol. J. 4, 271–276 (2002)

    Article  CAS  Google Scholar 

  11. S. Masten, S. Davies, Environ. Sci. Technol. 28, 180A–185A (1994)

    Article  CAS  PubMed  Google Scholar 

  12. Z. Pan, J. Zeng, L. Li, J. Porous Mater. 23(3), 619–628 (2016)

    Article  CAS  Google Scholar 

  13. H. Einaga, N. Maeda, S. Yamamoto, Y. Teraoka, Catal. Today 245, 22–27 (2015)

    Article  CAS  Google Scholar 

  14. Y. Liu, X. Li, J. Liu, C. Shi, A. Zhu, Chin. J. Catal. 35, 1465–1474 (2014)

    Article  CAS  Google Scholar 

  15. K. Soni, S.C. Shekar, B. Singh, A. Agrawal, Indian J. Chem. Sect. A 53, 484–492 (2014)

    Google Scholar 

  16. H. Einaga, Y. Teraoka, A. Ogat, Catal. Today 164, 571–574 (2011)

    Article  CAS  Google Scholar 

  17. J. Nawrocki, B. Kasprzyk-Hordern, Appl. Catal. B 99, 27–42 (2010)

    Article  CAS  Google Scholar 

  18. B. Dhandapani, S.Ted Oyama, Appl. Catal. B 11, 129–166 (1997)

    Article  CAS  Google Scholar 

  19. S.T. Oyama, Catal. Rev.: Sci. Eng. 42, 279–322 (2000)

    Article  CAS  Google Scholar 

  20. E. Rezaei, J. Soltan, Chem. Eng. J. 198–199, 482–490 (2012)

    Article  CAS  Google Scholar 

  21. D. Mehandjiev, A. Naydenov, Ozone Sci. Eng. 14, 277–282 (1992)

    Article  Google Scholar 

  22. P. Konova, A. Naydenov, D. Mehandjiev, Bul. Chem. Commun. 34, 437–444 (2002)

    CAS  Google Scholar 

  23. C. Weisel, C.J. Weschler, K. Mohan, J. Vallarino, J.D. Spengler, Environ. Sci. Technol. 47, 4711–4717 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M. Li, K.N. Hui, K.S. Hui, S.K. Lee, Y.R. Cho, H. Lee, W. Zhou, S. Cho, C.Y.H. Chao, Y. Li, Appl. Catal. B 107, 245–252 (2011)

    Article  CAS  Google Scholar 

  25. H. Einaga, S. Futamura, React. Kinet. Catal. Lett. 81, 121–128 (2004)

    Article  CAS  Google Scholar 

  26. H. Einaga, S. Futamura, Catal. Commun. 8, 557–560 (2007)

    Article  CAS  Google Scholar 

  27. P. Konova, M. Stoyanova, A. Naydenov, D. Mehandjiev, St. Christoskova, Appl. Catal. A 298(1–2), 109–114 (2006)

    Article  CAS  Google Scholar 

  28. Z. Hao, D. Cheng, Y. Guo, Y. Liang, Appl. Catal. B 33, 217–222 (2001)

    Article  CAS  Google Scholar 

  29. A. Naydenov, R. Stoyanova, D. Mehandjiev, J. Mol. Catal. 98, 9–14 (1995)

    Article  CAS  Google Scholar 

  30. M. Stoyanova, P. Konova, P. Nikolov, A. Naydenov, St. Christoskova, D. Mehandjiev, Chem. Eng. J. 122, 41–46 (2006)

    Article  CAS  Google Scholar 

  31. J. Jia, P. Zhang, L. Chen, Appl. Catal. B 189, 210–218 (2016)

    Article  CAS  Google Scholar 

  32. D. Li, J. Zhu, M.B. Ray, A.K. Ray, Chem. Eng. Sci. 66, 4615–4623 (2011)

    Article  CAS  Google Scholar 

  33. P. Nikolov, K. Genov, P. Konova, K. Milenova, T. Batakliev, V. Georgiev, N. Kumar, D.K. Sarker, D. Pishev, S. Rakovsky, J. Hazard. Mater. 184, 16–19 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. Q. Yu, H. Pan, M. Zhao, Z. Liu, J. Wang, Y. Chen, M. Gong, J. Hazard. Mater. 172, 631–634 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. Z. Lian, J. Ma, H. He, Catal. Commun. 59, 156–160 (2015)

    Article  CAS  Google Scholar 

  36. T. Batakliev, G. Tyuliev, V. Georgiev, M. Anachkov, A. Eliyas, S. Rakovsky, Ozone Sci. Eng. 37, 216–220 (2015)

    Article  CAS  Google Scholar 

  37. M. Magureanu, D. Piroi, N.B. Mandache, V.I. Parvulescu, V. Parvulescu, B. Cojocaru, C. Cadigan, R. Richards, H. Daly, C. Hardacre, Appl. Catal. B 104, 84–90 (2011)

    Article  CAS  Google Scholar 

  38. S. Imamura, M. Ikebata, T. Ito, T. Ogita, Ind. Eng. Chem. Res. 30, 217–221 (1991)

    Article  CAS  Google Scholar 

  39. A. Naydenov, P. Konova, P. Nikolov, F. Kligstedt, N. Kumar, D. Kovacheva, P. Stefanov, R. Stoyanova, D. Mehandjiev, Catal. Today 137, 471–474 (2008)

    Article  CAS  Google Scholar 

  40. M. Sugasawa, A. Ogata, Ozone. Sci. Eng. 33, 158–163 (2011)

    Article  CAS  Google Scholar 

  41. H. Einaga, A. Ogata, Environ. Sci. Technol. 44, 2612–2617 (2010)

    Article  CAS  PubMed  Google Scholar 

  42. N. Kumar, P. Konova, A. Naydenov, T. Heikillä, T. Salmi, D. Murzin, Catal. Lett. 98, 57–60 (2004)

    Article  CAS  Google Scholar 

  43. N. Kumar, P. Konova, A. Naydenov, T. Salmi, D. Murzin, T. Heikilla, V.-P. Lehto, Catal. Today 119, 342–346 (2007)

    Article  CAS  Google Scholar 

  44. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, U. S. Patent 5098 684, 1992

  45. P. Mäki-Arvela, N. Kumar, V. Nieminen, R. Sjöholm, T. Salmi, D.Y. Murzin, J. Catal. 225, 155–169 (2004)

    Article  CAS  Google Scholar 

  46. D. Kubicka, N. Kumar, P. Mäki-Arvela, M. Tiitta, V. Niemi, T. Salmi, D.Y. Murzin, J. Catal. 222, 65–79 (2004)

    Article  CAS  Google Scholar 

  47. G.I.N. Waterhouse, G.A. Bowmaker, J.B. Metson, Appl. Surf. Sci. 183, 191–204 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Petya M. Konova gratefully acknowledges the financial support obtained from the European Commission within the framework of the International Marie-Curie Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Konova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konova, P., Naydenov, A., Nikolov, P. et al. Low-temperature ozone decomposition, CO and iso-propanol combustion on silver supported MCM-41 and silica. J Porous Mater 25, 1301–1308 (2018). https://doi.org/10.1007/s10934-017-0540-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0540-9

Keywords

Navigation