Skip to main content
Log in

A facile strategy to fabricate carboxyl-rich carbon spheres with copper-based MOFs through coordination bond

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A new composite (CCSs/MOFs) of carboxyl-rich carbon spheres (CCSs) and copper-based metal–organic frameworks (MOFs) was for the first time prepared. The CCSs/MOFs composite was synthesized by the coordinated growth of high surface area and porous MOFs, [Cu3(BTC)2(H2O)]n (HKUST-1), on the surface of the functionalized CCSs obtained through a one-step hydrothermal carbonization of glucose with acrylic acid at 180 °C for 24 h. The resulting composites showed a core/shell structure with a tunable diameter arranging from 0.6 to 3.0 μm, and possessed high specific surface area of 495 m2/g and nanoporous structures derived from MOFs. Further, the catalytic oxidation of benzylic alcohol to benzaldehyde as its application was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim, Chem. Rev. 112, 782–835 (2012)

    Article  CAS  Google Scholar 

  2. A.R. Millward, O.M. Yaghi, J. Am. Chem. Soc. 127, 17998–17999 (2005)

    Article  CAS  Google Scholar 

  3. J.R. Li, J. Sculley, H.C. Zhou, Chem. Rev. 112, 869–932 (2012)

    Article  CAS  Google Scholar 

  4. Z.Y. Wang, J.J. Wang, M.Y. Li, K.H. Sun, C.J. Liu, Sci. Rep. 4, Article number: 5939 (2014)

  5. M. Eddaoudi, H. Li, O.M. Yaghi, J. Am. Chem. Soc. 122, 1391–1397 (2000)

    Article  CAS  Google Scholar 

  6. D. Farrusseng, K. Schlichte, B. Spliethoff, A. Wingen, S. Kaskel, J.S. Bradley, F. Schuth, Angew. Chem. Int. Ed. 40, 4204–4207 (2001)

    Article  CAS  Google Scholar 

  7. H.K. Chae, D.Y. Siberio-Perez, J. Kim, Y.B. Go, M. Eddaoudi, A.J. Matzger, M. O’Keeffe, O.M. Yaghi, Nature 427, 523–527 (2004)

    Article  CAS  Google Scholar 

  8. H.J. Lee, W. Cho, M. Oh, Chem. Commun. 48, 221–223 (2012)

    Article  CAS  Google Scholar 

  9. S. Sorribas, B. Zornoza, C. Tellez, J. Coronas, Chem. Commun. 48, 9388–9390 (2012)

    Article  CAS  Google Scholar 

  10. A. Ahmed, M. Forster, R. Clowes, D. Bradshaw, P. Myers, H.F. Zhang, J. Mater. Chem. A 1, 3276–3286 (2013)

    Article  CAS  Google Scholar 

  11. M.G. Schwab, I. Senkovska, M. Rose, M. Koch, J. Pahnke, G. Jonschker, S. Kaskel, Adv. Eng. Mater. 10, 1151–1155 (2008)

    Article  CAS  Google Scholar 

  12. C. Petit, T. Bandosz, Adv. Mater. 21, 4753–4757 (2009)

    Article  CAS  Google Scholar 

  13. C. Petit, T. Bandosz, Adv. Funct. Mater. 20, 111–118 (2010)

    Article  CAS  Google Scholar 

  14. X. Sun, Y. Li, Angew. Chem. Int. Ed. 43, 597–601 (2004)

    Article  Google Scholar 

  15. S.S.-Y. Chui, S.M.-F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, Science 283, 1148–1150 (1999)

    Article  CAS  Google Scholar 

  16. J.C. Liu, J.T. Culp, S. Natesakhawat, B.C. Bockrath, B. Zande, S.G. Sankar, G. Garberoglio, J.K. Johnson, J. Phys. Chem. C 111, 9305–9313 (2007)

    Article  CAS  Google Scholar 

  17. C. Petit, B. Mendoza, T. Bandosz, Langmuir 26, 15302–15309 (2010)

    Article  CAS  Google Scholar 

  18. H. Wang, L.J. Ma, K.C. Cao, J.X. Geng, J. Liu, Q. Song, X.D. Yang, S.J. Li, J. Hazard. Mater. 229–230, 321–330 (2012)

    Article  Google Scholar 

  19. R. Demir-Cakan, N. Baccile, M. Antonietti, M.M. Titirici, Chem. Mater. 21, 484–490 (2009)

    Article  CAS  Google Scholar 

  20. C. Petit, B. Mendoza, D. O’Donnell, T.J. Bandosz, Langmuir 27, 10234–10242 (2011)

    Article  CAS  Google Scholar 

  21. S. Vairam, S. Govindarajan, Thermochim. Acta 414, 263–270 (2004)

    Article  CAS  Google Scholar 

  22. C. Petit, B. Mendoza, T.J. Bandosz, Chem. Phys. Chem. 11, 3678–3684 (2010)

    CAS  Google Scholar 

  23. C. Petit, J. Burress, T.J. Bandosz, Carbon 49, 563–572 (2011)

    Article  CAS  Google Scholar 

  24. H. Wang, C. Wang, H. Yan, H. Yi, J. Lu, J. Catal. 324, 59–68 (2015)

    Article  CAS  Google Scholar 

  25. B. Zahed, H. Hosseini-Monfared, Appl. Surf. Sci. 328, 536–547 (2015)

    Article  CAS  Google Scholar 

  26. I. Tamiolakis, I.N. Lykakis, G.S. Armatas, Catal. Today 250, 180–186 (2015)

    Article  CAS  Google Scholar 

  27. T. Harada, S. Ikeda, F. Hashimoto, T. Sakata, K. Ikeue, T. Torimoto, M. Matsumura, Langmuir 26, 17720–17725 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Natural Science Foundation of China (Nos. 21171081/B0103 and 20971062/B010303), Natural Science Foundation of Liaoning Province (2013020085 and 201202093), Shenyang Science and Technology Plan Project (F13-289-1-00 and F14-231-1-10) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, C., Du, Y., Wang, R. et al. A facile strategy to fabricate carboxyl-rich carbon spheres with copper-based MOFs through coordination bond. J Porous Mater 23, 1537–1545 (2016). https://doi.org/10.1007/s10934-016-0214-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0214-z

Keywords

Navigation