Skip to main content
Log in

Binder-free combination of graphene nanosheets with TiO2 nanotube arrays for lithium ion battery anode

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Binder-free combination of graphene nanosheets with oriented TiO2 nanotube arrays was designed and achieved via one-step facile electrodeposition. The structure and morphology of as-prepared composite graphene nanosheets/TiO2 nanotube arrays were studied in terms of SEM, FESEM, EDX, TEM, Raman and FTIR. Furthermore, the corresponding electrochemical performances were evaluated in terms of galvanostatic charge/discharge, cycle stability and AC impedance. As expected, the composite graphene nanosheets/TiO2 nanotube arrays displayed higher discharge capacity, cycle stability and Li+ diffusion coefficient than bare TiO2 nanotube arrays. High Li-storage activity, superior conductivity and large surface area of graphene nanosheets should be responsible for improved electrochemical performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.E. Lee, E. Kim, J. Cho, Electrochem. Solid State Lett. A 1, 10 (2007)

    Google Scholar 

  2. N.K. Nitta, F.X. Wu, J.T. Lee, G. Yushin, Mater. Today 252, 18 (2015)

    Google Scholar 

  3. H. Jiang, Y.J. Hu, S.J. Guo, C.Y. Yan, P.S. Lee, C.Z. Li, ACS Nano 6038, 8 (2014)

    Google Scholar 

  4. X.F. Chen, Y. Huang, X. Zhang, C. Li, J.J. Chen, K. Wang, Mater. Lett. 181, 152 (2015)

    Google Scholar 

  5. F.D. Lupo, A. Tuel, V. Mendez, C. Francia, G. Meligrana, S. Bodoardo, C. Gerbaldi, Acta Mater. 60, 69 (2014)

    Google Scholar 

  6. Z. Xiu, X. Hao, Y. Wu, Q. Lu, S. Liu, J. Power Sources 334, 287 (2015)

    Google Scholar 

  7. Y. Wang, T. Chen, Q.M. Chen, Q. Mu, J. Mater. Chem. 6006, 21 (2011)

    Google Scholar 

  8. H.S. Kim, S.H. Yu, Y.E. Sung, S.H. Kang, J. Alloy. Compd. 275, 597 (2014)

    Google Scholar 

  9. R. Meng, H. Hou, X. Liu, W. Hu, J. Duan, S. Liu, Ceram. Int. 9988, 41 (2015)

    Google Scholar 

  10. F.F. Cao, S. Xin, Y.G. Guo, L. Wan, Phys. Chem. Chem. Phys. 2014, 13 (2011)

    Google Scholar 

  11. L.T. Anh, A.K. Rai, T.V. Thi, J. Gim, S. Kim, E. Shin, J.S. Lee, J. Kim, J. Power Sources 891, 243 (2013)

    Google Scholar 

  12. F.Y. Su, Y.B. He, B. Li, X.C. Chen, C.H. You, W. Wei, W. Lv, Q.H. Yang, F. Kang, Nano Energy 429, 1 (2012)

    Google Scholar 

  13. N. Kheirabadiand, A. Shafiekhani, J. Appl. Phys. 124323, 112 (2012)

    Google Scholar 

  14. E.J. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Nano Lett. 2277, 8 (2008)

    Google Scholar 

  15. Y.J. Mai, X.L. Wang, J.Y. Xiang, Y.Q. Qiao, D. Zhang, C.D. Gu, J.P. Tu, Electrochim. Acta 2306, 56 (2011)

    Google Scholar 

  16. X. Sun, Y. Zhang, L. Gu, L. Hu, K. Feng, Z. Chen, B. Cui, ECS Trans. 11, 64 (2015)

    Google Scholar 

  17. C. Liu, K. Wang, S. Luo, Y. Tang, L. Chen, Small 1203, 7 (2011)

    Google Scholar 

  18. Y. Wang, Z. Li, Y. Tian, W. Zhao, X. Liu, J. Yang, J. Mater. Sci. 7991, 23 (2014)

    Google Scholar 

  19. H. Hou, X. Hu, X. Liu, W. Hu, R. Meng, L. Li, Ionics 1919, 21 (2015)

    Google Scholar 

  20. J. Qiu, P. Zhang, M. Ling, S. Li, P. Liu, H. Zhao, S. Zhang, ACS Appl Mater. Interfaces 3636, 4 (2012)

    Google Scholar 

  21. Q. Zhou, Z. Fang, Anal. Chim. Acta 43, 869 (2015)

    Google Scholar 

  22. J. Wang, Y. Zhou, B. Xiong, Y. Zhao, X. Huang, Z. Shao, Electrochim. Acta 847, 88 (2013)

    Article  Google Scholar 

  23. Y. Zhang, A. Barber, J. Maxted, C. Lowe, R. Smith, T. Li, Prog. Org. Coat. 131, 76 (2013)

    Google Scholar 

  24. G.F. Ortiz, I. Hanzu, P. Knauth, P. Lavela, J.L. Tirado, T. Djeniziana, Electrochim. Acta 4262, 54 (2009)

    Google Scholar 

  25. H.L. Guo, X.F. Wang, Q.Y. Qian, F.B. Wang, X.H. Xia, ACS Nano 2653, 3 (2009)

    Google Scholar 

  26. S.Y. Toh, K.S. Loh, S.K. Kamarudin, W.R.W. Daud, Chem. Eng. J. 422, 251 (2014)

    Google Scholar 

  27. S. Pervez, D. Kim, C.H. Doh, U. Farooq, A. Yaqub, J.H. Choi, Y.J. Lee, M. Saleem, Mater. Lett. 347, 137 (2014)

    Google Scholar 

  28. R. Menéndez, P. Alvarez, C. Botas, F. Nacimiento, R. Alcántara, J.L. Tirado, G.F. Ortiz, J. Power Sources 886, 248 (2014)

    Google Scholar 

  29. H. Xiong, H. Yildirim, E.V. Shevchenko, V.B. Prakapenka, B. Koo, M.D. Slater, M. Balasubramanian, S.K.R.S. Sankaranarayanan, J.P. Greeley, S. Tepavcevic, N.M. Dimitrijevic, P. Podsiadlo, C.S. Johnson, T. Rajh, J. Chem. Phys. C 3181, 116 (2012)

    Google Scholar 

  30. M. Zhen, M. Sun, G. Gao, L. Liu, Z. Zhou, Chem. Eur. J. 5317, 21 (2015)

    Google Scholar 

  31. Z.J. Zhang, Q.Y. Zeng, S.L. Chou, X.J. Li, H.J. Li, K. Ozawa, H.K. Liu, J.Z. Wang, Electrochim. Acta 570, 133 (2014)

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51363011), the 46th Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry in China (6488-20130039), the Program of High-level Introduced Talent of Yunnan Province (10978125), Yunnan Project of Training Talent (1418425) and the Project of Key Discipline (14078232 and 14078311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongying Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, R., Hou, H., Liu, X. et al. Binder-free combination of graphene nanosheets with TiO2 nanotube arrays for lithium ion battery anode. J Porous Mater 23, 569–575 (2016). https://doi.org/10.1007/s10934-015-0111-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0111-x

Keywords

Navigation