Skip to main content
Log in

Room temperature hydrogen uptake in single walled carbon nanotubes incorporated MIL-101 doped with lithium: effect of lithium doping

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Single walled carbon nanotubes incorporated hybrid MIL-101 (SWNT-MIL-101) was synthesised and lithium ions were doped into the framework at various Li+ ions concentrations. Hydrogen adsorption–desorption measurements were performed at 298 K up to 90 bar and the hydrogen uptake capacities were found considerably enhanced by the combined modification by single walled carbon nanotubes and lithium doping. Lithium naphthalenide (C10H7Li) was used to dope Li+ ions into the SWNT-MIL-101 framework. The concentration of lithium ions inside the framework was quantitatively determined by inductively coupled plasma analysis. Powder X-ray diffraction studies showed that the crystalline framework of MIL-101 was not disturbed by SWNT incorporation and Li doping. BET surface area analysis by N2 adsorption at 77 K showed a decrease in BET surface and pore volume as the concentration of Li ions increases inside the framework. The present study showed that combined modification of MOFs by single walled carbon nanotube followed by lithium ion doping is effective in enhancing their hydrogen uptake capacities at ambient temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O.M. Yaghi, G. Li, H. Li, Nature 378, 703 (1995)

    Article  CAS  Google Scholar 

  2. J.L.C. Rowsell, O.M. Yaghi, Microporous Mesoporous Mater. 73, 3 (2004)

    Article  CAS  Google Scholar 

  3. M.J. Rosseinsky, Microporous Mesoporous Mater. 73, 15 (2004)

    Article  CAS  Google Scholar 

  4. D.J. Tranchemontagne, J.L. Mendoza-Cortes, M. O’Keeffe, O.M. Yaghi, Chem. Soc. Rev. 38, 1257 (2009)

    Article  CAS  Google Scholar 

  5. S.T. Meek, J.A. Greathouse, M.D. Allendorf, Adv. Mater. 23, 249 (2011)

    Article  CAS  Google Scholar 

  6. N. Stock, S. Biswas, Chem. Rev. 112, 933 (2012)

    Article  CAS  Google Scholar 

  7. M. Schröder, Functional Metal–Organic Frameworks: Gas Storage, Separation and Catalysis (Springer, Berlin, 2010), pp. 35–153

    Book  Google Scholar 

  8. S. Ma, H.C. Zhou, Chem. Commun. 46, 44 (2010)

    Article  CAS  Google Scholar 

  9. J.R. Li, J. Sculley, H.C. Zhou, Chem. Rev. 112, 869 (2012)

    Article  CAS  Google Scholar 

  10. M. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 112, 1196 (2012)

    Article  CAS  Google Scholar 

  11. N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Science 300, 1127 (2003)

    Article  CAS  Google Scholar 

  12. L.J. Murray, M. Dinca, J.R. Long, Chem. Soc. Rev. 38, 1294 (2009)

    Article  CAS  Google Scholar 

  13. M. Hirscher, B. Panella, B. Schmitz, Microporous Mesoporous Mater. 129, 335 (2010)

    Article  CAS  Google Scholar 

  14. Y.H. Hu, L. Zhang, Adv. Mater. 22, E117–E130 (2010)

    Article  CAS  Google Scholar 

  15. D. Zhao, D. Yuan, H.C. Zhou, Energy Environ. Sci. 1, 222 (2008)

    Article  CAS  Google Scholar 

  16. M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim, Chem. Rev. 112, 782 (2012)

    Article  CAS  Google Scholar 

  17. J.L.C. Rowsell, O.M. Yaghi, Angew. Chem. Int. Ed. 44, 4670 (2005)

    Article  CAS  Google Scholar 

  18. K.K. Tanabe, S.M. Cohen, Chem. Soc. Rev. 40, 498 (2011)

    Article  CAS  Google Scholar 

  19. S.J. Yang, J.Y. Choi, H.K. Chae, J.H. Cho, K.S. Nahm, C.R. Park, Chem. Mater. 21, 893 (2009)

    Google Scholar 

  20. K.P. Prasanth, P. Rallapalli, M.C. Raj, H.C. Bajaj, R.V. Jasra, Int. J. Hydrog. Energy 36, 7594 (2011)

    Article  CAS  Google Scholar 

  21. P.B.S. Rallapalli, M.C. Raj, D.V. Patil, K.P. Prasanth, R.S. Somani, H.C. Bajaj, Int. J. Energy Res. 37, 746 (2013)

    Article  Google Scholar 

  22. M. Ni, L. Huang, L. Gao, Z. Zhang, Int. J. Hydrog. Energy 35, 3546 (2010)

    Article  CAS  Google Scholar 

  23. A. Blomqvist, C.M. Araujo, P. Srepusharawoot, R. Ahuja, Proc. Natl. Acad. Sci. USA 104, 20173 (2007)

    Article  CAS  Google Scholar 

  24. P. Dalach, H. Frost, R.Q. Snurr, D.E. Ellis, J. Phys. Chem. C 112, 9278 (2008)

    Article  CAS  Google Scholar 

  25. E. Klontzas, A. Mavrandonakis, E. Tylianakis, G.E. Froudakis, Nano Lett. 8, 1572 (2008)

    Article  Google Scholar 

  26. K.L. Mulfort, O.K. Farha, C.L. Stern, A.A. Sarjeant, J.T. Hupp, J. Am. Chem. Soc. 131, 3866 (2009)

    Article  CAS  Google Scholar 

  27. D. Himsl, D. Wallacher, M. Hartmann, Angew. Chem. Int. Ed. 48, 4639 (2009)

    Article  CAS  Google Scholar 

  28. A. Ghoufi, J. Deschamps, G. Maurin, J. Phys. Chem. C 116, 10504 (2012)

    Article  CAS  Google Scholar 

  29. Z. Meng, R. Lu, D. Rao, E. Kan, C. Xiao, K. Deng, Int. J. Hydrog. Energy 38, 9811 (2013)

    Article  CAS  Google Scholar 

  30. S.S. Han, W.A. Goddard, J. Am. Chem. Soc. 129, 8422 (2007)

    Article  CAS  Google Scholar 

  31. D. Cao, J. Lan, W. Wang, B. Smit, Angew. Chem. Int. Ed. 48, 4730 (2009)

    Article  CAS  Google Scholar 

  32. G. Ferey, C.M. Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, Science 309, 2040 (2005)

    Article  CAS  Google Scholar 

  33. O.I. Lebedev, F. Millange, C. Serre, G. Van Tendeloo, G. Ferey, Chem. Mater. 17, 6525 (2005)

    Article  CAS  Google Scholar 

  34. D.Y. Hong, Y.K. Hwang, C. Serre, G. Ferey, J.S. Chang, Adv. Funct. Mater. 19, 1537 (2009)

    Article  CAS  Google Scholar 

  35. Z. Xiang, Z. Hu, W. Yang, D. Cao, Int. J. Hydrog. Energy 37, 946 (2012)

    Article  CAS  Google Scholar 

  36. P.K. Prabhakaran, J. Deschamps, J. Mater. Chem. A 3, 7014 (2015)

    Article  Google Scholar 

  37. A.P. Nelson, O.K. Farha, K.L. Mulfort, J.T. Hupp, J. Am. Chem. Soc. 131, 458 (2009)

    Article  CAS  Google Scholar 

  38. K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka, S. Iijima, Chem. Phys. Lett. 31, 14 (2000)

    Article  Google Scholar 

  39. Q. Liu, L. Ning, S. Zheng, M. Tao, Y. Shi, Y. He, Sci. Rep. 3, 2916 (2013)

    Google Scholar 

  40. M. Kubo, A. Shimojima, T. Okubo, J. Phys. Chem. C 116, 10260 (2012)

    Article  CAS  Google Scholar 

  41. M. Latroche, S. Surblé, C. Serre, C.M. Draznieks, P.L. Llewellyn, J.H. Lee, J.S. Chang, S.H. Jhung, G. Férey, Angew. Chem. Int. Ed. 45, 8227 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the “Delegation Générale de l’Armement (DGA)” for financial support and Dr Jean-François Hochepied for the access to the PXRD instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnny Deschamps.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhakaran, P.K., Deschamps, J. Room temperature hydrogen uptake in single walled carbon nanotubes incorporated MIL-101 doped with lithium: effect of lithium doping. J Porous Mater 22, 1635–1642 (2015). https://doi.org/10.1007/s10934-015-0047-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0047-1

Keywords

Navigation