Skip to main content
Log in

Preparation and characterization of electrodeposited Ag-doped ZnO inverse opals with a smooth surface

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Ag-doped ZnO inverse opal structures were prepared by electrochemical deposition using polystyrene colloidal crystal templates. The Ag-doped ZnO structures had granular morphology, but this morphology became smooth using a three-dimensional (3D) porous template in the same electrolyte. The Ag-doped ZnO structures were characterized using energy-dispersive X-ray spectroscopy, and the lattice parameter was found to increase compared with undoped ZnO as verified by X-ray diffraction. Strong reflection photonic stop bands centered at 495 and 681 nm were detected from inverse opals templated from microspheres having diameters of 285 and 370 nm. The filling ratio of Ag-doped ZnO inverse opals using the template was lower than that of the uniform film growth of undoped ZnO. Moreover, photochemical cell analysis revealed that doped ZnO inverse opals with n- and p-type conductivities were successfully formed using electrolytes with different silver ion concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Jagadish, S.J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications (Elsevier Science, Amsterdam, 2011)

    Google Scholar 

  2. E. Chikoidze, M. Boshta, M.H. Sayed, Y. Dumont, J. Appl. Phys. 113, 043713 (2013)

    Article  Google Scholar 

  3. W.J. Beek, M.M. Wienk, R.A. Janssen, Adv. Mater. 16, 1009 (2004)

    Article  CAS  Google Scholar 

  4. Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, H. Zhang, Small 6, 307 (2010)

    Article  CAS  Google Scholar 

  5. Y. Ryu, T.-S. Lee, J.A. Lubguban, H.W. White, B.-J. Kim, Y.-S. Park, C.-J. Youn, Appl. Phys. Lett. 88, 241108 (2006)

    Article  Google Scholar 

  6. K. Ramamoorthy, M. Arivanandhan, K. Sankaranarayanan, C. Sanjeeviraja, Mater. Chem. Phys. 85, 257 (2004)

    Article  CAS  Google Scholar 

  7. A.Y. Lyashkov, A. Tonkoshkur, J. Aguilar-Martinez, A. Glot, Ceram. Int. 39, 2323 (2012)

    Article  Google Scholar 

  8. X. Wang, M. Zhao, F. Liu, J. Jia, X. Li, L. Cao, Ceram. Int. 39, 2883 (2012)

    Article  Google Scholar 

  9. P. Mitra, A.P. Chatterjee, H. Maiti, Mater. Lett. 35, 33 (1998)

    Article  CAS  Google Scholar 

  10. Y. Yamaguchi, M. Yamazaki, S. Yoshihara, T. Shirakashi, J. Electroanal. Chem. 442, 1 (1998)

    Article  CAS  Google Scholar 

  11. M. Ahmad, E. Ahmed, Z. Hong, Z. Iqbal, N. Khalid, T. Abbas, I. Ahmad, A. Elhissi, W. Ahmed, Ceram. Int., (2013) 10.1016/j.ceramint.2013.04.051

  12. L. Vayssieres, Adv. Mater. 15, 464 (2003)

    Article  CAS  Google Scholar 

  13. Z.L. Wang, R.P. Gao, Z.W. Pan, Z.R. Dai, Adv. Eng. Mater. 3, 657 (2001)

    Article  Google Scholar 

  14. M. Fu, J. Zhou, Q. Xiao, B. Li, R. Zong, W. Chen, J. Zhang, Adv. Mater. 18, 1001 (2006)

    Article  CAS  Google Scholar 

  15. E. Hosono, S. Fujihara, I. Honma, H. Zhou, Adv. Mater. 17, 2091 (2005)

    Article  CAS  Google Scholar 

  16. O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’brien, P. Dapkus, I. Kim, Science 284, 1819 (1999)

    Article  CAS  Google Scholar 

  17. D. Yan, H. Wu, Z. Yang, J. Qiu, Z. Song, X. Yu, Y. Yang, D. Zhou, Z. Yin, R. Wang, J. Mater. Chem. 22, 18558 (2012)

    Article  CAS  Google Scholar 

  18. M. Campbell, D. Sharp, M. Harrison, R. Denning, A. Turberfield, Nature 404, 53 (2000)

    Article  CAS  Google Scholar 

  19. V.N. Manoharan, A. Imhof, J.D. Thorne, D.J. Pine, Adv. Mater. 13, 447 (2001)

    Article  CAS  Google Scholar 

  20. M. Egen, R. Voss, B. Griesebock, R. Zentel, S. Romanov, C.S. Torres, Chem. Mater. 15, 3786 (2003)

    Article  CAS  Google Scholar 

  21. K. Busch, S. John, Phys. Rev. Lett. 83, 967 (1999)

    Article  CAS  Google Scholar 

  22. O.D. Velev, E.W. Kaler, Adv. Mater. 12, 531 (2000)

    Article  CAS  Google Scholar 

  23. D.J. Norris, Y.A. Vlasov, Adv. Mater. 13, 371 (2001)

    Article  CAS  Google Scholar 

  24. Y. Zhang, J. Mu, J. Colloid Interface Sci. 309, 478 (2007)

    Article  CAS  Google Scholar 

  25. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondia, Nature 405, 437 (2000)

    Article  CAS  Google Scholar 

  26. H.-B. Sun, S. Matsuo, H. Misawa, Appl. Phys. Lett. 74, 786 (1999)

    Article  CAS  Google Scholar 

  27. C. Lokhande, S. Pawar, Phys. Status Solidi A 111, 17 (1989)

    Article  CAS  Google Scholar 

  28. M. Fu, J. Zhou, Q. Xiao, B. Li, Y. Bai, L. Li, J. Electroceram. 21, 374 (2008)

    Article  CAS  Google Scholar 

  29. B.H. Juárez, P.D. García, D. Golmayo, A. Blanco, C. López, Adv. Mater. 17, 2761 (2005)

    Article  Google Scholar 

  30. M. Thomas, J. Cui, J. Phys. Chem. Lett. 1, 1090 (2010)

    Article  CAS  Google Scholar 

  31. M. Thomas, J. Cui, J. Appl. Phys. 105, 093533 (2009)

    Article  Google Scholar 

  32. M.A. Thomas, J.B. Cui, J. Appl. Phys. 105, 093533 (2009)

    Article  Google Scholar 

  33. E. Przeździecka, E. Kamińska, I. Pasternak, A. Piotrowska, J. Kossut, Phys. Rev. B 76, 193303 (2007)

    Article  Google Scholar 

  34. D.C. Look, G. Renlund, R. Burgener, J. Sizelove, Appl. Phys. Lett. 85, 5269 (2004)

    Article  CAS  Google Scholar 

  35. A. Zeuner, H. Alves, D. Hofmann, B. Meyer, A. Hoffmann, U. Haboeck, M. Strassburg, M. Dworzak, Phys. Status Solidi B 234, R7 (2002)

    Article  CAS  Google Scholar 

  36. H. Cheng, X. Xu, H. Hng, J. Ma, Ceram. Int. 35, 3067 (2009)

    Article  CAS  Google Scholar 

  37. J. Cui, U. Gibson, Appl. Phys. Lett. 87, 133108 (2005)

    Article  Google Scholar 

  38. Y. Zhang, M. Fu, J. Wang, D. He, Y. Wang, Opt. Mater. 34, 1758 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China under grants of Nos. 91123025, 50902008, 60825407, 61077044 and the National Basic Research Program of China Nos. 2011CB932700, 2011CB932703, the Fundamental Research Funds for the Central Universities Nos. 2011JBM297, 2010JBZ006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, M., Li, S., Yao, J. et al. Preparation and characterization of electrodeposited Ag-doped ZnO inverse opals with a smooth surface. J Porous Mater 20, 1485–1489 (2013). https://doi.org/10.1007/s10934-013-9734-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-013-9734-y

Keywords

Navigation