Skip to main content
Log in

A Plackett–Burman design in hydrothermal synthesis of TiO2-derived nanotubes

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this paper, a screening approach, involving the use of Plackett–Burman experimental design, permitted the evaluation of effects of 8 parameters from hydrothermal synthesis of TiO2-derived nanotubes such as raw material surface area, \( m_{{{\text{TiO}}_{2} }} , \) filling factor, temperature, time, aging, stirring, and HCl concentration on the physical properties. All variables were investigated at two widely spaced levels. According to the obtained results, the influences of different factors depend on the selected response. The study highlights the role of filling factor, stirring, temperature, raw material, and time conditions on the surface area response. Also, the study highlights the role of filling factor and stirring conditions on the pore size response. No factors influenced on the pore volume response. The effects of some parameters, such as aging, \( m_{{{\text{TiO}}_{2} }} , \) and HCl concentration, were negligible. These factors could be eliminated from hydrothermal synthesis. The low surface area of products related to the higher surface area of raw material and stirring condition. TEM micrographs showed that the morphologies for high, medium, and low surface areas of products are nanotubes, nanowires, and nanospheres, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Zhao, J. Jin, X. Yang, Mater. Lett. 61, 384 (2007)

    Article  CAS  Google Scholar 

  2. J.N. Nian, H. Teng, J. Phys. Chem. B 110, 4193 (2006)

    Article  CAS  Google Scholar 

  3. D.V. Bavykin, F.C. Walsh, Eur. J. Inorg. Chem. 8, 977 (2009)

    Article  Google Scholar 

  4. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, Sol. Energy Mater. Sol. Cells 90, 2011 (2006)

    Article  CAS  Google Scholar 

  5. H.H. Ou, S.L. Lo, Sep. Purif. Technol. 58, 179 (2007)

    Article  CAS  Google Scholar 

  6. D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Adv. Mater. 18, 2807 (2006)

    Article  CAS  Google Scholar 

  7. Q. Chen, L.M. Peng, Int. J. Nanotechnol. (IJNT) 4, 44 (2007)

    Article  Google Scholar 

  8. J.H. Jung, H. Kobayashi, K.J.C. van Bommel, S. Shinkai, T. Shimizu, Chem. Mater. 14, 1445 (2002)

    Article  CAS  Google Scholar 

  9. P. Hoyer, Adv. Mater. 8, 857 (1996)

    Article  CAS  Google Scholar 

  10. D. Eder, M.S. Motta, I.A. Kinloch, A.H. Windle, Phys. E 37, 245 (2007)

    Article  CAS  Google Scholar 

  11. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160 (1998)

    Article  CAS  Google Scholar 

  12. Z.Y. Yuan, B.L. Su, Colloids Surf. A 241, 173 (2004)

    Article  CAS  Google Scholar 

  13. A. Nakahira, W. Kato, M. Tamai, T. Isshiki, K. Nishio, J. Mater. Sci. 39, 4239 (2004)

    Article  CAS  Google Scholar 

  14. Q. Chen, W.Z. Zhou, G.H. Du, L.M. Peng, Adv. Mater. 14, 1208 (2002)

    Article  CAS  Google Scholar 

  15. M. Hodos, H. Haspel, E. Horváth Á. Kukovecz, Z. Kónya, I. Kiricsi, Electronic properties of novel nanostructures (2005) 345

  16. D.V. Bavykin, J.M. Friedrich, A.A. Lapkin, F.C. Walsh, J. Mater. Chem. 14, 3370 (2004)

    Article  CAS  Google Scholar 

  17. B. Poudel, W.Z. Wang, C. Dames, J.Y. Huang, S. Kunwar, D.Z. Wang, D. Banerjee, G. Chen, Z.F. Ren, Nanotechnology 16, 1935 (2005)

    Article  CAS  Google Scholar 

  18. H.K. Seo, G.S. Kim, S.G. Ansari, Y.S. Kim, H.S. Shin, K.H. Shim, E.K. Suh, Sol. Energy Mater. Sol. Cells 92, 1533 (2008)

    Article  CAS  Google Scholar 

  19. L.Q. Weng, S.H. Song, S. Hodgson, A. Baker, J. Yu, J. Eur. Ceram. Soc. 26, 1405 (2006)

    Article  CAS  Google Scholar 

  20. C.C. Tsai, J.N. Nian, H. Teng, Appl. Surf. Sci. 253, 1898 (2006)

    Article  CAS  Google Scholar 

  21. L.M. Sikhwivhilu, N.J. Coville, B.M. Pulimaddi, J. Venkatreddy, V. Vishwanathan, Catal. Commun. 8, 1999 (2007)

    Article  CAS  Google Scholar 

  22. D.C. Montgomery, Design and analysis of experiments, 5th edn. (Wiley, New York, 2001)

    Google Scholar 

  23. R.A. Stowe, R.P. Mayer, Ind. Eng. Chem. 58, 36 (1966)

    Article  CAS  Google Scholar 

  24. R.L. Plackett, J.P. Burman, Biometrika 33, 305 (1946)

    Article  Google Scholar 

  25. C.C. Tsai, H. Teng, Chem. Mater. 16, 4352 (2004)

    Article  CAS  Google Scholar 

  26. E. Horvath, A. Kukovecz, Z. Konya, I. Kiricsi, Chem. Mater. 19, 927 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Iranian Oil Company for financial support, which enabled this work to be undertaken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasoul Sarraf-Mamoory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safaei, M., Sarraf-Mamoory, R., Rashidzadeh, M. et al. A Plackett–Burman design in hydrothermal synthesis of TiO2-derived nanotubes. J Porous Mater 17, 719–726 (2010). https://doi.org/10.1007/s10934-009-9343-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-009-9343-y

Keywords

Navigation