Skip to main content

Advertisement

Log in

Climatic implications of hydrologic changes in two lake catchments on the central Tibetan Plateau since the last glacial

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The numerous and widespread lakes of the Tibetan Plateau (TP) constitute the largest group of alpine lakes on Earth. Some of the lakes are fed mainly by glacier meltwater and others by precipitation and groundwater. Past changes in the environments of these lakes differed because of differences in lake hydrological regimes and the complex pattern of climate change on the TP. Here we present records of scanning XRF, inorganic carbon (IC) concentration n-alkanoic acid average chain length (ACL) and percent aquatic inputs (Paq) in sediment cores from two non-glaciated lakes on the central TP (Dagze Co and Jiang Co), which span the past 19,000 years. We used these measures to investigate past changes in catchment hydrology, climate and environment. Variations in the concentration of Ti and other lithogenic elements at the two sites were influenced mainly by surface runoff, which is supported by the variation of IC, Ca/(Al, Ti, Fe) (reflecting authigenic carbonate precipitation), Rb/Sr (a chemical weathering proxy), and ACL and Paq. We attribute variations in surface runoff to changes in the precipitation/evaporation ratio, caused by the pattern of climate change on the central TP since the late Pleistocene. During the late Pleistocene, stronger runoff (indicated by higher Ti, higher Rb/Sr and Paq, lower IC, Ca/(Al, Ti, Fe) and ACL) likely resulted from lower temperatures. Lower runoff during the Holocene may reflect intensified evaporation caused by higher temperatures. Comparison with records from glaciated lakes in the region reveals opposite trends in catchment hydrology. Overall, our results suggest that since the late Pleistocene the central TP was influenced mainly by the Indian Summer Monsoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali HAM, Mayes RW, Hector BL, Verma AK, Orskov ER (2005) The possible use of n-alkanes, long-chain fatty alcohols and long-chain fatty acids as markers in studies of the botanical composition of the diet of free-ranging herbivores. J Agric Sci 143:85–95

    Article  Google Scholar 

  • An Z, Colman SM, Zhou W, Li X, Brown ET, Jull AJT, Cai Y, Huang Y, Lu X, Chang H, Song Y, Sun Y, Xu H, Liu W, Jin Z, Liu X, Cheng P, Liu Y, Ai L, Li X, Liu X, Yan L, Shi Z, Wang X, Wu F, Qiang X, Dong J, Lu F, Xu X (2012) Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci Rep. doi:10.1038/srep00619

    Google Scholar 

  • Blaauw M, Christen JA (2011) Flexible paleoclimat age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474

    Google Scholar 

  • Boës X, Rydberg J, Martinez-Cortizas A, Bindler R, Renberg I (2011) Evaluation of conservative lighogenic elements (Ti, Zr, Al, Rb) to study anthropogenic element enrichmentss in lake sediments. J Paleolimnol 46:75–87

    Article  Google Scholar 

  • Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012) The state and fate of Himalayan glaciers. Science 336:310–314

    Article  Google Scholar 

  • Buggle B, Glaser B, Hambach U, Gerasimenko N, Markovic S (2011) An evaluation of geochemical weathering indices in loess–paleosol studies. Quat Int 240:12–21

    Article  Google Scholar 

  • Bush RT, McInerney FA (2013) Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim Cosmochim Acta 117:161–179

    Article  Google Scholar 

  • Carr AS, Boom A, Grimes HL, Chase BM, Meadows ME, Harris A (2014) Leaf wax n-alkane distributions in arid zone South African flora: environmental controls, chemotaxonomy and palaeoecological implications. Org Geochem 67:72–84

    Article  Google Scholar 

  • Chen J, An Z, Head J (1999) Variation of Rb/Sr ratios in the loess–paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quat Res 51:215–219

    Article  Google Scholar 

  • Chen F-H, Yu Z-C, Yang M-L, Ito E, Wang S-M, Madsen DB, Huang X-Z, Zhao Y, Sato T, Birks HJB, Boomer I, Chen J-H, An C-B, Wünnemann B (2008) Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev 27:351–364

    Article  Google Scholar 

  • COHMAP Members (1988) Climatic changes of the last 18,000 years: observations and model simulations. Science 241:1043–1052

    Article  Google Scholar 

  • Dykoski CA, Edwards RL, Cheng H, Yuan D, Cai Y, Zhang M, Lin Y, Qing J, An Z, Revenaugh J (2005) A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett 233:71–86. doi:10.1016/j.epsl.2005.1001.1036

    Article  Google Scholar 

  • Fernandez M, Björck S, Wohlfarth B, MArdana N, Unkel I, van der Putten N (2013) Diatom assemblage changes in lacustrine sediments from Isla de los Estados, southernmost South America, in response to shifts in the southwesterly wind belt during the last deglaciation. J Paleolimnol 50:433–446

    Article  Google Scholar 

  • Ficken KJ, Li B, Swain DL, Eglinton G (2000) An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem 31:745–749

    Article  Google Scholar 

  • Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subbary AA, Buettner A, Hippler D, Matter A (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188. doi:10.1016/j.quascirv.2006.1004.1012

    Article  Google Scholar 

  • Gao L, Zheng M, Fraser M, Huang Y (2014) Comparable hydrogen isotopic fractionation of plant leaf wax n-alkanoic acids in arid and humid subtropical ecosystems. Geochem Geophys Geosyst. doi:10.1002/2013GC005015

    Google Scholar 

  • Haug GH, Hughen KA, Sigman DM, Peterson LC, Rohl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1304–1308

    Article  Google Scholar 

  • Hong YT, Hong B, Lin QH, Zhu YX, Shibata Y, Hirota M, Uchida M, Leng XT, Xu H, Wang H, Yi L (2003) Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth Planet Sci Lett 211:371–380

    Article  Google Scholar 

  • Hou J, D’Andrea WJ, Liu Z (2012) The influence of C-14 reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quat Sci Rev 48:67–79

    Article  Google Scholar 

  • Huang L, Zhu L, Wang J, Ju J, Wang Y, Zhang J, Yang R (2016) Glacial activity reflected in a continuous lacustrine record since the early Holocene from the proglaical Laigu Lake on the southeastern Tibetan Plateau. Palaeogeogr Palaeoclimatol 456:37–45

    Article  Google Scholar 

  • Hughen K, Eglinton TL, Xu L, Makou M (2004) Abrupt tropical vegetation response to rapid climate changes. Science 304:1955–1959

    Article  Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328:1382–1385

    Article  Google Scholar 

  • Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482:514–518

    Article  Google Scholar 

  • Jiang D, Yu G, Zhao P, Chen X, Liu J, Liu X, Wang S, Zhang Z, Yu Y, Li Y, Jin L, Xu Y, Ju L, Zhou T, Yan X (2015) Paleoclimate modeling in China—a review. Adv Atmos Sci 32:250–275

    Article  Google Scholar 

  • Jin Z, An Z, Yu J, Li F, Zhang F (2015) Lake Qinghai sediment geochemistry linked to hydroclimate variability since the last glacial. Quat Sci Rev 122:63–73

    Article  Google Scholar 

  • Jin C, Günther F, Li S, Jia G, Peng P, Gleixner G (2016) Reduced early Holocene moisture availability inferred from δD values of sedimentary n-alkanes in Zigetang Co, Central Tibetan Plateau. Holocene 26:556–566

    Article  Google Scholar 

  • Komuscu AU, Erkan A, Oz S (1998) Possible impacts of climate change on soil moisture avalability in the Southeast Anatolia development project region (GAP): an analysis from an agricultural drought perspective. Clim Change 40:519–545

    Article  Google Scholar 

  • Kutzbach J, Gutter P, Behling PJ, Selin R (1993) Simulated climatic changes: results of the COHMAP climate-model experiments. In: Wright HE Jr, Kutzback JE, Webb T III, Ruddiman WF, Street-Perrott FA, Bartlein PJ (eds) Global climates since the last glacial maximum. University of Minnesota Press, Minneapolis, pp 24–93

    Google Scholar 

  • Lai Z, Mischke S, Madsen D (2014) Paleoenvironmental implications of new OSL dates on the formation of the “Shell Bar” in the Qaidam Basin, northeastern Qinghai–Tibetan Plateau. J Paleolimnol 51:197–210

    Article  Google Scholar 

  • Li X, Liang J, Hou J, Zhang W (2015) Centennial-scale climate variability during the past 2000 years on the central Tibetan Plateau. Holocene 25:892–899

    Article  Google Scholar 

  • Liu W, Li X, An Z, Xu L, Zhang Q (2013a) Total organic carbon isotopes: a novel proxy of lake level from Lake Qinghai in the Qinghai–Tibet Plateau, China. Chem Geol 347:153–160

    Article  Google Scholar 

  • Liu X, Lai Z, Zeng F, Madsen DB, C E (2013b) Holocene lake level variations on the Qinghai–Tibetan Plateau. Int J Earth Sci 102:2007–2016

    Article  Google Scholar 

  • Ma R, Yang G, Duan H, Jiang J, Wang S, Feng X, Li A, Kong F, Xue B, Wu J, Li S (2011) China’s lakes at present: number, area and spatial distribution. Sci China Ser D 54:283–289

    Article  Google Scholar 

  • Mueller A, Islebe G, Hillesheim M, Grzesik D, Anselmetti F, Ariztegui D, Brenner M, Curtis J, Hodell D, Venz K (2009) Climate dyring and associated forest decline in the lowlands of northern Guatemala during the Late Holocene. Quat Res 71:133–141

    Article  Google Scholar 

  • Muhs DR, Bettis RA, Been J, McGeehin JP (2001) Impact of climate and parent material on chemical weathering in loess-derived soils of the Mississippi River valley. Soil Sci Soc Am J 65:1761–1777

    Article  Google Scholar 

  • Nesbitt HW, Markovics G, Price RC (1980) Chemical processes affecting alkalis and alkali earths during continental weathering. Geochim Cosmochim Acta 44:1659–1666

    Article  Google Scholar 

  • Poynter JG, Farrimond P, Robinson N, Eglinton G (1989) Aeolian-derived higher plant lipids in the marine sedimentary record: links with palaeoclimate. In: Leinen M, Sarnthein M (eds) Paleoclimatology and paleometeorology: modern and past patterns of global atmospheric transport. Kluwer Academic Publishers, Dordrecht, pp 435–462

    Chapter  Google Scholar 

  • Qiu S, Zhu Z, Yang T, Wu Y, Bai Y, Ouyang T (2014) Chemical weathering of monsoonal eastern China: implications from major elements of topsoil. J Asian Earth Sci 81:77–90

    Article  Google Scholar 

  • Schiemann R, Lüthi D, Schär C (2009) Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J Clim 22:2940–2957

    Article  Google Scholar 

  • Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical convergence zone. Nature 513:45–53

    Article  Google Scholar 

  • Stocker H, Wanner H (1975) Changes in the composition of coffee leaf wax with development. Phytochemistry 14:1919–1920

    Article  Google Scholar 

  • Thompson LG, Yao T, Davis ME, Henderson KA, Mosley-Thompson E, Lin PN, Beer J, Synal HA, Cole-Dai J, Bolzan JF (1997) Tropical climate instability: the last Glaclai cycle from a Qinghai–Tibetan ice core. Science 276:1821–1825

    Article  Google Scholar 

  • Unkel I, Fernandez M, Björck S, Ljung K, Wohlfarth B (2010) Records of environmetnal changes during the Holocene from Isla de los Estados (54.4S), southeastern Tierra del Fuego. Glob Planet Change 74:99

    Article  Google Scholar 

  • Wang S, Dou H (1998) Lakes in China. Science Publisher, Beijing, p 580

    Google Scholar 

  • Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA, Li X (2005) The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308:854–857

    Article  Google Scholar 

  • White AF, Blum AE (1995) Effects of climate on chemical weathering in watershed. Geochim Cosmochim Acta 59:1729–1747

    Article  Google Scholar 

  • Wilkie KMK, Chapligin B, Meyer H, Burns S, Petsch S, Brigham-Grette J (2013) Modern isotope hydrology and controls on dD of plant leaf waxes at Lake El’gygytgyn, NE Russia. Clim Past 9:335–352

    Article  Google Scholar 

  • Wünnemann B, Demske D, Tarasov P, Kotlia BS, Reinhardt C, Bloemendal J, Diekmann B, Hartmann K, Krois J, Riedel F, Arya N (2010) Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quat Sci Rev 29:1138–1155

    Article  Google Scholar 

  • Yancheva G, Nowaczyk NR, Mingram J, Dulski P, Schettler G, Negendank JFW, Liu JQ, Sigman DM, Peterson LC, Haug GH (2007) Influence of the intertropical convergence zone on the East Asian monsoon. Nature 445:74–77

    Article  Google Scholar 

  • Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel DB, Joswiak D (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change. doi:10.1038/nclimate1580

    Google Scholar 

  • Zhu L, Lü X, Wang J, Peng P, Kasper T, Daut G, Haberzettl T, Frenzel P, Li Q, Yang R, Schwalb A, Mäusbacher R (2015) Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM. Sci Rep. doi:10.1038/srep13318

    Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Strategic Priority Research Program (B) (Grant No. XDB01020300) of the Chinese Academy of Sciences, and Natural Science Foundation of China Key project (41230523).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juzhi Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Tian, Q., Liang, J. et al. Climatic implications of hydrologic changes in two lake catchments on the central Tibetan Plateau since the last glacial. J Paleolimnol 58, 257–273 (2017). https://doi.org/10.1007/s10933-017-9976-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-017-9976-9

Keywords

Navigation