Skip to main content

Advertisement

Log in

A multiproxy evaluation of Holocene environmental change from Lake Igaliku, South Greenland

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

This is the first integrated multiproxy study to investigate climate, catchment evolution and lake ecology in South Greenland. A 4-m-long sedimentary sequence from Lake Igaliku (61º 00′ N, 45º 26′ W, 15 m asl) documents major environmental and climatic changes in south Greenland during the last 10 ka. The chronology is based on a 210Pb and 137Cs profile and 28 radiocarbon dates. The paleoenvironmental history is interpreted on the basis of magnetic susceptibility, grain size, total organic carbon, total nitrogen and sulphur, sedimentation rates, pollen, and diatom assemblages. The basal radiocarbon date at ca. 10 cal ka BP provides a minimum age for the deglaciation of the basin, which is followed by ~500 years of high sedimentation rates in a glacio-marine environment. After the glacio-isostatic emergence of the basin ca. 9.5 cal ka BP, limnological and terrestrial proxies suggests early warmth, which may have been interrupted by a cold, dry and windy period between 8.6 and 8.1 cal ka BP. A dry and windy event ~5.3–4.8 cal ka BP preceded the Neoglacial transition at Lake Igaliku, which is characterized by a shift toward moister and perhaps cooler conditions ~4.8 cal ka BP, causing major changes in terrestrial and aquatic ecological conditions. Significant cooling is documented after ~3 cal ka BP. Since ~1 cal ka BP the climatic-driven changes were overprinted by the human influence of Norse and recent agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott MB, Stafford TW Jr (1996) Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada. Quat Res 45:300–311

    Article  Google Scholar 

  • Aebly FA, Fritz SC (2009) Palaeohydrology of Kangerlussuaq (Søndre Strømfjord), West Greenland during the last ~8000 years. Holocene 19:91–104

    Article  Google Scholar 

  • Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25:483–486

    Article  Google Scholar 

  • Anderson NJ, Stedmon CA (2007) The effect of evapoconcentration on dissolved organic carbon concentration and quality in lakes of SW Greenland. Freshw Biol 52:280–289

    Article  Google Scholar 

  • Andresen CS, Björck S, Bennike O, Bond G (2004) Holocene climate changes in southern Greenland: evidence from lake sediments. J Quat Sci 19:783–795

    Article  Google Scholar 

  • Andresen CS, Svante B, Rundgren M, Conley DJ, Jessen C (2006) Rapid Holocene climate changes in the North Atlantic: evidence from lake sediments from the Faroe Islands. Boreas 35:23–34

    Article  Google Scholar 

  • Antoniades D, Crawley C, Douglas MSV, Pienitz R, Andersen D, Doran PT, Hawes I, Pollard W, Vincent WF (2007) Abrupt environmental change in Canada’s northernmost lake inferred from fossil diatom and pigment stratigraphy. Geophys Res Lett 34:L18708

    Article  Google Scholar 

  • Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8

    Article  Google Scholar 

  • Arneborg J (2007) Saga trails Brattahlid, Gardar, Hvalsey fjord’s church and herjolfnesnes: four chieftain’s farmsteads in the north settlements of Greenland. A visitor’s guidebook. National Museum of Denmark, Copenhagen

    Google Scholar 

  • Atkinson MD (1992) Betula Pendula Roth (B Verrucosa Ehrh) and B Pubescens Ehrh. J Ecol 80:837–870

    Article  Google Scholar 

  • Austrheim G, Asheim LJ, Bjarnason G, Feilberg J, Fosaa AM, Holand Ø, Høegh K, Jónsdóttir I, Magnússon B, Mortensen LE, Mysterud A, Olsen E, Skonhoft A, Steinheim G, Thórhallsdóttir AG (2008) Sheep grazing in the North-Atlantic region—a long term perspective on management, resource economy and ecology. NTNU Zoological Report 2008-3 Norwegian University of Science and Technology, Trondheim

  • Barber DC, Dyke A, Hillaire-Marcel C, Jennings AE, Andrews JT, Kerwin MW, Bilodeau G, McNeely R, Southon J, Morehead MD, Gagnon JM (1999) Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400:344–348

    Article  Google Scholar 

  • Battarbee RW, Kneen MJ (1982) The use of electronically counted microspheres in absolute diatom analysis. Limnol Oceanogr 27:184–188

    Article  Google Scholar 

  • Bennike O, Björck S (2000) Lake sediment coring in South Greenland in 1999. Geol Greenl Surv Bull 186:60–64

    Google Scholar 

  • Bennike O, Björck S, Lambeck K (2002) Estimates of South Greenland late-glacial ice limits from a new relative sea level curve. Earth Planet Sci Lett 197:171–186

    Article  Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–317

    Article  Google Scholar 

  • Berner RA, Raiswell R (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12:365–368

    Article  Google Scholar 

  • Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München

    Google Scholar 

  • Bigler C, Larocque I, Peglar SM, Birks HJB, Hall RI (2002) Quantitative multiproxy assessment of long-term patterns of Holocene environmental change from a small lake near Abisko, northern Sweden. Holocene 12:481–496

    Article  Google Scholar 

  • Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518

    Article  Google Scholar 

  • Cappelen J, Jørgensen BV, Laursen EV, Stannius LS, Thomsen RS (2001) The observed climate of Greenland, 1958-99—With climatological standard normals, 1961-90. DMI Technical Report No 00-18, Danish Meteorological Institute, Copenhagen

  • Christensen-Bojsen KM (1991) Land use and resource exploitation in the Norse western settlement in Greenland. Acta Boreal 8:29–39

    Article  Google Scholar 

  • Corner GD, Kolka VV, Yevzerov VY, Møller JJ (2001) Postglacial relative sea-level change and stratigraphy of raised coastal basins on Kola Peninsula, northwest Russia. Glob Planet Change 31:155–177

    Article  Google Scholar 

  • Cremer H, Wagner B (2004) Planktonic diatom communities in High Arctic lakes (Store Koldewey, Northeast Greenland). Can J Bot 82:1744–1757

    Article  Google Scholar 

  • Daley TJ, Thomas ER, Holmes JA, Street-Perrott FA, Chapman MR, Tindall JC, Valdes PJ, Loader NJ, Marshall JD, Wolff EW, Hopley PJ, Atkinson T, Barber KE, Fisher EH, Robertson I, Hughes PDM, Roberts CN (2011) The 8200 yr BP cold event in stable isotope records from the North Atlantic region. Glob Planet Change 79:288–302

    Article  Google Scholar 

  • De Groot W, Thomas P, Wein R (1997) Biological flora of the British Isles, no. 194 Betula nana L. and Betula glandulosa Michx. J Ecol 85:241–264

    Article  Google Scholar 

  • DeLuca T, Zackrisson O (2007) Enhanced soil fertility under Juniperus communis in arctic ecosystems. Plant Soil 294:147–155

    Article  Google Scholar 

  • Desloges JR, Gilbert R, Nielsen N, Christiansen C, Rasch M, Øhlenschläger R (2002) Holocene glacimarine sedimentary environments in fiords of Disko Bugt, West Greenland. Quat Sci Rev 21:947–963

    Article  Google Scholar 

  • Edwards KJ, Schofield JE, Kirby JR, Cook GT (2011) Problematic but promising ponds? Palaeoenvironmental evidence from the Norse Eastern Settlement of Greenland. J Quat Sci 26:854–865

    Article  Google Scholar 

  • Engstrom DR, Fritz SC, Almendinger JE, Juggins S (2000) Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408:161–166

    Article  Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis. Wiley, Chichester

    Google Scholar 

  • Fallu M-A, Allaire N, Pienitz R (2000) Freshwater diatoms from northern Québec and Labrador (Canada) Species-environment relationship in lakes of boreal forest, forest-tundra and tundra regions. Bibl Diatomol 45:200

    Google Scholar 

  • Feilberg J (1984) A phytogeographical study of South Greenland vascular plants. Meddel Grønl Biosci 15:1–69

    Google Scholar 

  • Foged N (1953) Diatoms from west Greenland. Medd Grønl 147:86

    Google Scholar 

  • Foged N (1955) Diatoms from Peary Land, North Greenland. Medd Grønl 128:90

    Google Scholar 

  • Foged N (1972) The Diatoms in four postglacial deposits in Greenland. Medd Grønl 194:66

    Google Scholar 

  • Foged N (1977) The diatoms in four postglacial deposits at Godthabsfjord, West Greenland. Medd Grønl 199:64

    Google Scholar 

  • Fréchette B, de Vernal A (2009) Relationship between Holocene climate variations over southern Greenland and eastern Baffin Island and synoptic circulation pattern. Clim Past 5:347–359

    Article  Google Scholar 

  • Fréchette B, de Vernal A, Guiot J, Wolfe AP, Miller GH, Fredskild B, Kerwin MW, Richard PJH (2008) Methodological basis for quantitative reconstruction of air temperature and sunshine from pollen assemblages in Arctic Canada and Greenland. Quat Sci Rev 27:1197–1216

    Article  Google Scholar 

  • Fredskild B (1973) Studies in the vegetational history of Greenland. Medd Grønl 198:1–245

    Google Scholar 

  • Fredskild B (1983) The Holocene development of some low and high arctic Greenland lakes. Hydrobiologia 103:217–224

    Article  Google Scholar 

  • Fredskild B (1984) Holocene palaeo-winds and climatic changes in West Greenland as indicated by long-distance transported and local pollen in lake sediments. In: Mörner N-A, Karlén W (eds) Climatic changes on a yearly to millennial basis. Reidel, Dordrecht, pp 163–171

    Google Scholar 

  • Fredskild B (1991) The genus Betula in Greenland-Holocene history, present distribution and synecology. Nord J Bot 11:393–412

    Article  Google Scholar 

  • Fredskild B (1992) Erosion and vegetational changes in South Greenland caused by agriculture. Geogr Tidsskr 92:14–21

    Google Scholar 

  • García D, Zamora R, Gómez JM, Jordano P, Hódar JA (2000) Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. J Ecol 88:435–446

    Article  Google Scholar 

  • Gauthier E, Bichet V, Massa C, Petit C, Vannière B, Richard H (2010) Pollen and non-pollen palynomorph evidence of medieval farming activities in southwestern Greenland. Veg Hist Archaeobot 19:427–438

    Article  Google Scholar 

  • Gunn DE, Best AI (1998) A new automated non destructive system for high resolution multi-sensor core logging of open sediment cores. Geo-Mar Lett 18:70–77

    Article  Google Scholar 

  • Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115

    Article  Google Scholar 

  • Jackson MG, Oskarsson N, Trønnes RG, McManus JF, Oppo DW, Grönvold K, Hart SR, Sachs JP (2005) Holocene loess deposition in Iceland: evidence for millennial-scale atmosphere-ocean coupling in the North Atlantic. Geology 33:509–512

    Article  Google Scholar 

  • Jennings A, Andrews J, Wilson L (2011) Holocene environmental evolution of the SE Greenland Shelf North and South of the Denmark Strait: Irminger and East Greenland current interactions. Quat Sci Rev 30:980–998

    Article  Google Scholar 

  • Jones G (1986) The Norse Atlantic Saga: Being the Norse Voyages of Discovery and Settlement to Iceland, Greenland, and North America. Oxford University Press, New York, NY

    Google Scholar 

  • Kaplan MR, Wolfe AP, Miller GH (2002) Holocene environmental variability in Southern Greenland inferred from Lake Sediments. Quat Res 58:149–159

    Article  Google Scholar 

  • Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PJ, Brubaker LB, Coats LL, Cwynar LC, Duvall ML, Dyke AS, Edwards ME, Eisner WR, Gajewski K, Geirsdóttir A, Hu FS, Jennings AE, Kaplan MR, Kerwin MW, Lozhkin AV, MacDonald GM, Miller GH, Mock CJ, Oswald WW, Otto-Bliesner BL, Porinchu DF, Rühland K, Smol JP, Steig EJ, Wolfe BB (2004) Holocene thermal maximum in the western Arctic (0–180°W). Quat Sci Rev 23:529–560

    Article  Google Scholar 

  • Kaufman DS, Schneider DP, McKay NP, Ammann CM, Bradley RS, Briffa KR, Miller GH, Otto-Bliesner BL, Overpeck JT, Vinther BM (2009) Recent warming reverses long-term arctic cooling. Science 325:1236–1239

    Article  Google Scholar 

  • Kelly MA, Lowell TV (2009) Fluctuations of local glaciers in Greenland during latest Pleistocene and Holocene time. Quat Sci Rev 28:2088–2106

    Article  Google Scholar 

  • Lamoureux SF, Gilbert R (2004) A 750-yr record of autumn snowfall and temperature variability and winter storminess recorded in the varved sediments of Bear Lake, Devon Island, Arctic Canada. Quat Res 61:134–147

    Article  Google Scholar 

  • Larsen NK, Kjær KH, Olsen J, Funder S, Kjeldsen KK, Nørgaard-Pedersen N (2011) Restricted impact of Holocene climate variations on the southern Greenland ice sheet. Quat Sci Rev 30:3171–3180

    Article  Google Scholar 

  • Lewis CFM, Miller AAL, Levac E, Piper DJW, Sonnichsen GV (2011) Lake Agassiz outburst age and routing by Labrador Current and the 8.2 cal ka cold event. Quat Intern. doi:10.1016/jquaint201108023

  • Lofi J, Weber O (2001) SCOPIX - digital processing of X-ray images for the enhancement of sedimentary structures in undisturbed core slabs. Geo-Mar Lett 20:182–186

    Article  Google Scholar 

  • Long AJ, Roberts DH, Wright MR (1999) Isolation basin stratigraphy and Holocene relative sea-level change on Arveprinsen Ejland, Disko Bugt, West Greenland. J Quat Sci 14:323–345

    Article  Google Scholar 

  • Long AJ, Woodroffe SA, Roberts DH, Dawson S (2011) Isolation basins, sea-level changes and the Holocene history of the Greenland ice sheet. Quat Sci Rev 30:3748–3768

    Article  Google Scholar 

  • Massa C, Bichet V, Gauthier É, Perren BB, Mathieu O, Petit C, Monna F, Giraudeau J, Losno R, Richard H (2012) A 2500 year record of natural and anthropogenic soil erosion in South Greenland. Quat Sci Rev 32:119–130

    Article  Google Scholar 

  • Masson-Delmotte V, Jouzel J, Landais A, Stievenard M, Johnsen SJ, White JWC, Werner M, Sveinbjornsdottir A, Fuhrer K (2005) GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin. Science 309:118–121

    Article  Google Scholar 

  • McGowan S, Ryves DB, Anderson NJ (2003) Holocene records of effective precipitation in West Greenland. Holocene 13:239–249

    Article  Google Scholar 

  • McGowan S, Juhler R, Anderson N (2008) Autotrophic response to lake age, conductivity and temperature in two West Greenland lakes. J Paleolimnol 39:301–317

    Article  Google Scholar 

  • Mikkelsen N, Kuijpers A, Arneborg J (2008) The Norse in Greenland and late Holocene sea-level change. Polar Rec 44:45–50

    Article  Google Scholar 

  • Moore D, Webb JA, Collinson ME (1991) Pollen Analysis. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Nørgaard-Pedersen N, Mikkelsen N (2009) 8000 year marine record of climate variability and fjord dynamics from Southern Greenland. Mar Geol 264:177–189

    Article  Google Scholar 

  • Nørlund P, Roussell A (1929) Norse Ruins at Gardar The Episcopal Seat of Mediaeval Greenland. Medd Grønl 76:1–171

    Google Scholar 

  • O’Brien SR, Mayewski PA, Meeker LD, Meese DA, Twickler MS, Whitlow SI (1995) Complexity of holocene climate as reconstructed from a Greenland ice core. Science 270:1962–1964

    Article  Google Scholar 

  • Pennington W, Tutin TG, Cambray RS, Fisher EM (1973) Observations on lake sediments using fallout 137Cs as a tracer. Nature 242:324–326

    Article  Google Scholar 

  • Perren B, Anderson NJ, Douglas MSV, Fritz SC (this volume) Direct and indirect climate influences on Holocene lake development in West Greenland. J Paleolimnol

  • Perren B, Massa C, Bichet V, Gauthier É , Mathieu O, Petit C, Richard H (2012) A paleoecological perspective on 1450 years of human and climate impacts in South Greenland. Holocene. doi:10.1177/0959683612437865

  • Presthus Heggen M, Birks HH, Anderson NJ (2010) Long-term ecosystem dynamics of a small lake and its catchment in west Greenland. Holocene 20:1207–1222

    Article  Google Scholar 

  • Reille M (1992) Pollen et spores d’Europe et d’Afrique du nord. Laboratoire de Botanique historique et Palynologie, Marseille

    Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) INTCAL09 and MARINE09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150

    Google Scholar 

  • Renberg I (1990) A procedure for preparing large sets of diatom slides from sediment cores. J Paleolimnol 4:87–90

    Article  Google Scholar 

  • Routh J, Meyers PA, Gustafsson Ö, Baskaran M, Hallberg R, Schöldström A (2004) Sedimentary geochemical record of human-induced environmental changes in the lake Brunnsviken watershed, Sweden. Limnol Oceanogr 49:1560–1569

    Article  Google Scholar 

  • Rutherford GK (1995) Soils of Some Norse Settlements in Southwestern Greenland. Arctic 48:324–328

    Google Scholar 

  • Shaver GR, Chapin FS III (1991) Production: Biomass relationships and element cycling in contrasting arctic vegetation types. Ecol Monogr 61:1–31

    Article  Google Scholar 

  • Sparrenbom CJ, Bennike O, Björck S, Lambeck K (2006) Holocene relative sea-level changes in the Qaqortoq area, southern Greenland. Boreas 35:171–187

    Article  Google Scholar 

  • Thomas ER, Wolff EW, Mulvaney R, Steffensen JP, Johnsen SJ, Arrowsmith C, White JWC, Vaughn B, Popp T (2007a) The 8.2 ka event from Greenland ice cores. Quat Sci Rev 26:70–81

    Article  Google Scholar 

  • Thomas PA, El-Barghathi M, Polwart A (2007b) Biological Flora of the British Isles: Juniperus communis L. J Ecol 95:1404–1440

    Article  Google Scholar 

  • Wagner B, Melles M, Hahne J, Niessen F, Hubberten H-W (2000) Holocene climate history of Geographical Society Ø, East Greenland—evidence from lake sediments. Palaeogeogr Palaeoclimatol Palaeoecol 160:45–68

    Article  Google Scholar 

  • Weidick A, Kelly M, Bennike O (2004) Late Quaternary development of the southern sector of the Greenland Ice Sheet, with particular reference to the Qassimiut lobe. Boreas 33:284–299

    Article  Google Scholar 

  • Willemse NW, Törnqvist TE (1999) Holocene century-scale temperature variability from West Greenland lake records. Geology 27:580–584

    Article  Google Scholar 

  • Winkelmann D, Knies J (2005) Recent distribution and accumulation of organic carbon on the continental margin west off Spitsbergen. Geochem Geophys Geosyst 6:Q09012

    Article  Google Scholar 

  • Wooller MJ, Francis D, Fogel ML, Miller GH, Walker IR, Wolfe AP (2004) Quantitative paleotemperature estimates from δ18O of chironomid head capsules preserved in arctic lake sediments. J Paleolimnol 31:267–274

    Article  Google Scholar 

Download references

Acknowledgments

This work is part of PhD thesis of Charly Massa (University of Franche-Comté). This study was supported by the French Polar Institute (IPEV, grant no. 1004) and the ANR CEPS “Green Greenland” project. Special thanks to Miki Egede, farmer at Igaliku, who kindly provided a detailed history of modern sheep farming in the region. We thank also Hervé Grisey, Michel Campy, and Boris Vannière for help in the field. The authors gratefully acknowledge three anonymous reviewers and Darrell Kaufman for their constructive comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charly Massa.

Additional information

This is one of 18 papers published in a special issue edited by Darrell Kaufman, and dedicated to reconstructing Holocene climate and environmental change from Arctic lake sediments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massa, C., Perren, B.B., Gauthier, É. et al. A multiproxy evaluation of Holocene environmental change from Lake Igaliku, South Greenland. J Paleolimnol 48, 241–258 (2012). https://doi.org/10.1007/s10933-012-9594-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-012-9594-5

Keywords

Navigation