Skip to main content

Advertisement

Log in

Scanning reflectance spectroscopy (380–730 nm): a novel method for quantitative high-resolution climate reconstructions from minerogenic lake sediments

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

High-resolution (annual to sub-decadal) quantitative reconstructions of climate variables are needed from a variety of paleoclimate archives across the world to place current climate change in the context of long-term natural climate variability. Rapid, high-resolution, non-destructive scanning techniques are required to produce such high-resolution records from lake sediments. In this study we explored the potential of scanning reflectance spectroscopy (VIS-RS; 380–730 nm) to produce quantitative summer temperature reconstructions from minerogenic sediments of proglacial, annually laminated Lake Silvaplana, in the eastern Swiss Alps. The scanning resolution was 2 mm, which corresponded to sediment deposition over 1–2 years. We found correlations up to r = 0.84 (p < 0.05) for the calibration period 1864–1950, between six reflectance-dependent variables and summer (JJAS) temperature. These reflectance-dependent variables (e.g. slope of the reflectance 570/630 nm, indicative of illite, biotite and chlorite; minimum reflectance at 690 nm indicative of chlorite) indicate the mineralogical composition of the clastic sediments, which is, in turn, related to climate in the catchment of this particular proglacial lake. We used multiple linear regression (MLR) to establish a calibration model that explains 84% of the variance of summer (JJAS) temperature during the calibration period 1864–1950. We then applied the calibration model downcore to develop a quantitative summer temperature reconstruction extending back to AD 1177. This temperature reconstruction is in good agreement with two independent temperature reconstructions based on documentary data that extend back to AD 1500 and tree ring data that extend back to AD 1177. This study confirms the great potential of in situ scanning reflectance spectroscopy as a novel non-destructive technique to rapidly acquire high-resolution quantitative paleoclimate information from minerogenic lake sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Begert M, Schlegel T, Kirchhofer W (2005) Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int J Climatol 25:65–80

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57:289–300

    Google Scholar 

  • Bigler C, von Gunten L, Lotter AF, Hausmann S, Blass A, Ohlendorf C, Sturm M (2007) Quantifying human-induced eutrophication in Swiss mountain lakes since AD 1800 using diatoms. Holocene 17:1141–1154

    Article  Google Scholar 

  • Birks HJB (1998) Numerical tools in palaeolimnology–Progress, potentialities, and problems. J Paleolimnol 20:307–332

    Article  Google Scholar 

  • Blass A, Grosjean M, Troxler A, Sturm M (2007a) How stable are twentieth-century calibration models? A high-resolution summer temperature reconstruction for the eastern Swiss Alps back to AD 1580 derived from proglacial varved sediments. Holocene 17:51–63

    Article  Google Scholar 

  • Blass A, Bigler C, Grosjean M, Sturm M (2007b) Decadal-scale autumn temperature reconstruction back to AD 1580 inferred from the varved sediments of Lake Silvaplana (southeastern Swiss Alps). Quat Res 68:184–195

    Article  Google Scholar 

  • Büntgen U, Frank DC, Nievergelt D, Esper J (2006) Summer temperature variations in the European Alps, A.D. 755–2004. J Clim 19:5606–5623

    Article  Google Scholar 

  • Casty C, Wanner H, Luterbacher J, Esper J, Boehm R (2005) Temperature and precipitation variability in the European Alps since AD 1500. Int J Climatol 25:1855–1880

    Article  Google Scholar 

  • Caviezel G (2007) Hochwasser und ihre Bewältigung anhand des Beispiels Oberengadin 1750–1900. MSc thesis. University of Bern, Bern

  • Cleveland WS, Devlin SJ (1988) Locally weighted regression–an approach to regression-analysis by local fitting. J Am Stat Assoc 83:596–610

    Article  Google Scholar 

  • Dawdy DR, Matalas NC (1964) Statistical and probability analysis of hydrologic data, part III: analysis of variance, covariance and time series. In: Chow VT Handbook of Applied Hydrology, a Compendium of Water-Resources Technology. McGraw-Hill, New York, pp 8.68–8.90

  • Francus P, Bradley RS, Abbott MB, Patridge W, Keimig F (2002) Paleoclimate studies of minerogenic sediments using annually resolved textural parameters. Geophys Res Lett 29

  • Frontier S (1976) Etude de la décroissance des valeurs propres dans une analyse en composantes principales: comparaison avec le modèle du bâton brisé. J Exp Mar Biol Ecol 25:67–75

    Article  Google Scholar 

  • Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618

    Article  Google Scholar 

  • Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24(417–441):498–520

    Article  Google Scholar 

  • Kalugin I, Daryin A, Smolyaninova L, Andreev A, Diekmann B, Khlystov O (2007) 800-yr-long records of annual air temperature and precipitation over southern Siberia inferred from Teletskoye Lake sediments. Quat Res 67:400–410

    Article  Google Scholar 

  • Kamenik C, Van der Knaap WO, Van Leeuwen JFN, Goslar T (2009) Pollen/climate calibration based on a near-annual peat sequence from the Swiss Alps. J Quat Sci 24:529–546

    Article  Google Scholar 

  • Kaufman DS, Schneider DP, McKay NP, Ammann CM, Bradley RS, Briffa KR, Miller GH, Otto-Bliesner BL, Overpeck JT, Vinther BM (2009) Recent warming reverses long-term arctic cooling. Science 325:1236–1239

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • McKay NP, Kaufman DS, Michelutti N (2008) Biogenic silica concentration as a high-resolution, quantitative temperature proxy at Hallet Lake, south-central Alaska. Geophys Res Lett 35

  • Michelutti N, Blais JM, Cumming BF, Paterson AM, Ruehland K, Wolfe AP, Smol JP (2009) Do spectrally inferred determinations of chlorophyll a reflect trends in lake trophic status? J Paleolim (online)

  • Ohlendorf C (1998) High Alpine Lake Sediments as Chronicles for Regional Glacier and Climate History in the Upper Engadine, Southeastern Switzerland. PhD thesis. ETH Zürich, Zürich

  • Rein B (2003) In situ Reflektionsspektroskopie und digitale Bildanalyse–Gewinnung hochauflösender Paläoumweltdaten mit fernerkundlichen Methoden. Habilitationsschrift. University of Mainz, Mainz

    Google Scholar 

  • Rein B, Sirocko F (2002) In situ reflectance spectroscopy–analysing techniques for high-resolution pigment logging in sediment cores. Int J Earth Sci 91:950–954

    Article  Google Scholar 

  • Rein B, Lueckge A, Reinhardt L, Sirocko F, Wolf A, Dullo W (2005) El Nino variability off Peru during the last 20,000 years. Paleoceanography 20: PA 4003

  • Rosen P, Dodbakk E, Renberg I, Nilsson M, Hall R (2000) Near-infrared spectrometry (NIRS): a new tool for inferring past climatic changes from lake sediments. Holocene 10:161–166

    Article  Google Scholar 

  • SMA (2002) Jahresbericht der Meteo Schweiz. Annalen der Meteo Schweiz

  • Spillmann P (1993) Die Geologie des penninischen-ostalpinen Grenzbereichs im südlichen Berninagebirge, PhD thesis. ETH Zürich, Zürich

  • Telford R, Birks HJB (2009) Evaluation of transfer functions in spatially structured environments. Quat Sci Rev 28:1309–1316

    Article  Google Scholar 

  • Trachsel M, Eggenberger U, Grosjean M, Blass A, Sturm M (2008) Mineralogy-based quantitative precipitation, temperature reconstructions from annually laminated lake sediments (Swiss Alps) since AD 1580. Geophys Res Lett 35:L13707

    Article  Google Scholar 

  • Trachsel M, Grosjean M, Larocque-Tobler I, Schwikowski M, Blass A, Sturm M (2010) Quantitative summer temperature reconstruction derived from a combined biogenic Si and chironomid record from varved sediments of Lake Silvaplana (south-eastern Swiss Alps) back to AD 1177. Quat Sci Rev 29:2719–2730

    Article  Google Scholar 

  • Trenberth KE (1984) Some effects of finite sample size and persistence on meteorological statistics. Part I: Autocorrelations. Mon Weather Rev 112:2359–2368

    Article  Google Scholar 

  • USGS (2007) Digital Spectral Library, splib06a. http://speclab.cr.usgs.gov/spectral-lib.html

  • van der Wollenberg AL (1977) Redundancy analysis: an alternative for canonical correlation analysis. Psychometrika 42:207–219

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York

    Google Scholar 

  • von Gunten L, Grosjean M, Rein B, Urrutia R, Appleby P (2009) A quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo, central Chile, back to AD 850. Holocene 19:873–881

    Article  Google Scholar 

  • Wolfe AP, Vinebrooke R, Michelutti N, Rivard B, Das B (2006) Experimental calibration of lake-sediment spectral reflectance to chlorophyll a concentrations: methodology and paleolimnological validation. J Paleolimnol 36:91–100

    Article  Google Scholar 

  • Zolitschka B, Mingram J, van der Gaast S, Jansen JHF, Naumann R (2001) Sediment logging techniques. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments physical and chemical techniques. Kluwer Academic Publishers, Dordrecht, pp 137–153

    Google Scholar 

Download references

Acknowledgments

We thank Alex Blass, Thomas Kulbe, Michael Sturm and Alois Zwyssig for their help during fieldwork. We are grateful to Krystyna Saunders for her proof-reading of the English text. Mark Brenner and two anonymous reviewers made useful comments and suggestions, and helped improve the manuscript. Project grants were provided by European Union FP6 project “Millennium’’ (Contract 017008), NF-200021-106005/1 “ENLARGE” and the NCCR Climate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Trachsel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trachsel, M., Grosjean, M., Schnyder, D. et al. Scanning reflectance spectroscopy (380–730 nm): a novel method for quantitative high-resolution climate reconstructions from minerogenic lake sediments. J Paleolimnol 44, 979–994 (2010). https://doi.org/10.1007/s10933-010-9468-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-010-9468-7

Keywords

Navigation