Skip to main content

Advertisement

Log in

Biomarker and compound-specific δ13C evidence for changing environmental conditions and carbon limitation at Lake Koucha, eastern Tibetan Plateau

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

A sediment core from Lake Koucha (eastern Tibetan Plateau) was investigated using organic biomarkers and their stable carbon isotope signatures. The correlation between TOC content, total amount of aquatic macrophyte-derived n-alkanes (e.g. nC23) and δ13C values of TOC and nC23 indicates that Lake Koucha was macrophyte-dominated before 8 cal ka BP. Shortly after the lake turned from a saline to a freshwater system at 7.2 cal ka BP, a variety of algal and bacterial markers such as hopanoids and isoprenoids emerged, of which phytane, pentamethylicosene (PMI), moretene and diploptene are particularly abundant. Phytane and PMI show different isotopic signals (≈−18 and ≈−28‰, respectively), which indicates that they originated from different sources. Phytane may have been derived from cyanobacteria, while methanogenic archaea may be the source of PMI. The isotopic depletion of diploptene and moretene (≈−60‰) indicates the presence of methanotrophs. After 6.1 cal ka BP, the saturated C20 highly branched isoprenoid (HBI) became the dominant constituent of the aliphatic hydrocarbon fraction. Such dominance has rarely been reported in lacustrine environments, and indicates a strong presence of algae (most likely diatoms) or cyanobacteria. At 4.7 cal ka BP, the appearance of an unsaturated C25 HBI, which is a specific biomarker for diatoms, was noted. Furthermore, the level of nC17-alkane was observed to increase in abundance in the uppermost two samples. These results suggest that the lake was phytoplankton-dominated during the last 6.1 ka. Relatively low biomarker concentrations and δ13C values at 6.0, 3.1 and 1.8 cal ka BP indicate the occurrence of cool periods, which is in agreement with inferences from other locations on the Tibetan Plateau. The δ13C values of nC23 range from −23.5 to −12.6‰, with high values at the peak of macrophyte abundance at ca. 11 cal ka BP and at the phytoplankton maximum between ca 6.1 and 2.8 cal ka BP. Thus, aquatic macrophyte-derived mid-chain n-alkanes have been found to be excellent indicators of carbon-limiting conditions, which lead to the assimilation of isotopically-enriched carbon species. The limitation of carbon sources could be a localized phenomenon occurring in dense plant stands (as in the older section of the core), or it may be induced by high primary productivity (as in the younger section). Since the δ13C value of the inorganic carbon source may vary, the offset between the δ13C values of nC23 and TIC could serve as a more precise proxy for carbon-limiting conditions in lacustrine environments, which could in turn be interpreted with respect to lacustrine paleo-productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ageta H, Arai Y (1983) Fern constituents: pentacyclic triterpenoids isolated from Polypodium niponicum and P. formosamum. Phytochemistry 22:1801–1808

    Article  Google Scholar 

  • Allen ED, Spence DHN (1981) The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh water. New Phytol 87:269–283

    Article  Google Scholar 

  • An CB, Feng ZD, Barton L (2006) Dry or humid? Mid-Holocene humidity changes in arid and semi-arid China. Quat Sci Rev 25:351–361

    Article  Google Scholar 

  • Belt ST, Massé G, Allard WG, Robert JM, Rowland SJ (2001a) Identification of a C25 highly branched isoprenoid triene in the freshwater diatom Navicula sclesvicensis. Org Geochem 32:1169

    Article  Google Scholar 

  • Belt ST, Massé G, Allard WG, Robert JM, Rowland SJ (2001b) C25 highly branched isoprenoid alkenes in planktonic diatoms of the Pleurosigma genus. Org Geochem 32:1271–1275

    Article  Google Scholar 

  • Blumenberg M, Seifert R, Kasten S, Bahlmann E, Michaelis W (2009) Euphotic zone bacterioplankton sources major sedimentary bacteriohopanepolyols in the Holocene Black Sea. Geochim Cosmochim Acta 73:750–766

    Article  Google Scholar 

  • Bond G, Showers W, Cheseby M, Lotti R, Almasi P, de Menocal P, Priore P, Cullen H, Haydas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates. Science 278:1257–1266

    Article  Google Scholar 

  • Brassell SC, Wardroper AMK, Thomson ID, Maxwell JR, Eglinton G (1981) Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments. Nature 290:693–696

    Article  Google Scholar 

  • Brush GS, Hilgartner WB (2000) Paleoecology of submerged macrophytes in the upper Chesapeake Bay. Ecol Monogr 70:645–667

    Article  Google Scholar 

  • Burkhardt S, Riebesell U, Zondervan I (1999) Effects of growth rate, CO2 concentration and cell size on the stable carbon isotope fractionation in marine phytoplankton. Geochim Cosmochim Acta 63:3729–3741

    Article  Google Scholar 

  • Chen F, Yu Z, Yang M, Ito E, Wang S, Madsen DB, Huang X, Zhao Y, Sato T, Birks HJB, Boomer I, Chen J, An C, Wünnemann B (2008) Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev 27:351–364

    Article  Google Scholar 

  • Deuser WG (1970) Isotopic evidence for diminishing supply for available carbon during diatom bloom in the Black Sea. Nature 225:1069–1071

    Article  Google Scholar 

  • Didyk BM, Simoneit BRT, Brassell SC, Eglinton G (1978) Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272:216–222

    Article  Google Scholar 

  • Dunlop RW, Jefferies PR (1985) Hydrocarbons of the hypersaline basins of Shark Bay, Western Australia. Org Geochem 8:313–320

    Article  Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    Article  Google Scholar 

  • Elvert M, Suess E, Whiticar MJ (1999) Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86:295–300

    Article  Google Scholar 

  • Elvert M, Whiticar MJ, Suess E (2001) Diploptene in varved sediments of Saanich Inlet: indicator of increasing bacterial activity under anaerobic conditions during the Holocene. Mar Geol 174:371–383

    Article  Google Scholar 

  • Fan P, Wang D, Qi R (2004) Analysis on climatic feature and its change in source region of the Yellow River. J Qinghai Univ 22:19–24

    Google Scholar 

  • Ficken KJ, Li B, Swain DL, Eglinton G (2000) An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem 31:745–749

    Article  Google Scholar 

  • Fogel ML, Cifuentes LA (1993) Isotope fractionation during primary production. In: Engel MH, Macko SA (eds) Organic geochemistry: principles and applications. Plenum press, New York, pp 73–98

    Google Scholar 

  • Freeman KH, Hayes JM, Trendel JM, Albrecht P (1990) Evidence from GC-MS carbon isotopic measurements for multiple origins of sedimentary hydrocarbons. Nature 353:627–644

    Google Scholar 

  • Freeman KH, Wakeham SG, Hayes JM (1994) Predictive isotopic biogeochemistry: hydrocarbons from anoxic marine basins. Org Geochem 21:629–644

    Article  Google Scholar 

  • Gasse F, Fontes JC, VanCampo E, Wei K (1996) Holocene environmental changes in Bangong Co basin (western Tibet). 4. Discussion and conclusions. Palaeogeogr Palaeoclimatol Palaeoecol 120:79–92

    Article  Google Scholar 

  • Gelpi E, Schneider H, Mann J, Oró J (1970) Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry 9:603–612

    Article  Google Scholar 

  • Gomes A, Azevedo D (2003) Aliphatic and aromatic hydrocarbons in tropical recent sediments of Campos dos Goytacazes, RJ, Brazil. J Braz Chem Soc 14:358–368

    Article  Google Scholar 

  • Grimalt JO, Yruela I, Saiz-Jimenez C, Toja J, DeLeeuw JW, Albaiges J (1991) Sedimentary lipid biogeochemistry of an hypereutrophic alkaline lagoon. Geochim Cosmochim Acta 55:2555–2577

    Article  Google Scholar 

  • Grossi V, Hirschler A, Raphel D, Rontani JF, De Leeuw JW, Bertrand JC (1998) Biotransformation pathways of phytol in recent anoxic sediments. Org Geochem 29:845–861

    Article  Google Scholar 

  • Gupta A, Anderson DM, Overpeck JT (2003) Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421:354–357

    Article  Google Scholar 

  • Hanisch S, Ariztegui D, Puttmann W (2003) The biomarker record of Lake Albano, central Italy—implications for Holocene aquatic system response to environmental change. Org Geochem 34:1223–1235

    Article  Google Scholar 

  • Hayes JM, Freemann KH, Popp BN, Hoham CH (1990) Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. Org Geochem 16:1115–1128

    Article  Google Scholar 

  • Herzschuh U (2006) Palaeo-moisture evolution at the margins of the Asian monsoon during the last 50 ka. Quat Sci Rev 25:163–178

    Article  Google Scholar 

  • Herzschuh U, Zhang C, Mischke S, Herzschuh R, Mohammadi F, Mingram B, Kürschner H, Riedel F (2005) A late Quaternary lake record from the Qilian Mountains (NW China): evolution of the primary production and the water depth reconstructed from macrofossil, pollen, biomarker, and isotope data. Glob Planet Change 46:361–379

    Article  Google Scholar 

  • Herzschuh U, Winter K, Wünnemann B, Li S (2006) A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by Lake Zigetang pollen spectra. Quat Int 154–155:113–121

    Article  Google Scholar 

  • Herzschuh U, Kramer A, Mischke S, Zhang C (2009) Quantitative climate and vegetation trends since the late glacial on the northeastern Tibetan Plateau deduced from Koucha Lake pollen spectra. Quat Res 71:162–171

    Article  Google Scholar 

  • Holzer G, Oro J, Tornabene TG (1979) Gas chromatography-mass spectrometric analysis of neutral lipids from methanogenic and thermoacidophilic bacteria. J Chromatogr 186:795–809

    Article  Google Scholar 

  • Huang YS, Street-Perrott FA, Perrot RA, Metzger P, Eglinton G (1999) Glacial-interglacial environmental changes inferred from molecular and compound-specific delta C-13 analyses of sediments from Sacred Lake, Mt. Kenya. Geochim Cosmochim Acta 63:1383–1404

    Article  Google Scholar 

  • Jaffe R, Mead R, Hernandez ME, Peralba MC, DiGuida OA (2001) Origin and transport of sedimentary organic matter in two subtropical estuaries: a comparative, biomarker-based study. Org Geochem 32:507–526

    Google Scholar 

  • Kenig F, Sinninghe Damsté JS, Kock-van Dalen AC, Rijpstra WIC, Huc AY, de Leeuw JW (1995) Occurrence and origin of mono-, di-, and trimethylalkanes in modern and Holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates. Geochim Cosmochim Acta 59:2999–3015

    Article  Google Scholar 

  • Kolattukudy PE, Croteau R, Buckner JS (1976) Biochemistry of plant waxes. In: Kolattukudy) PE (ed) Chemistry, biochemistry of natural waxes. Elsevier, Amsterdam, pp 289–347

    Google Scholar 

  • Koopmans MP, Rijpstra WIC, Klapwijk MM, de Leeuw JW, Lewan MD, Sinninghe Damste’ JS (1999) A thermal and chemical degradation approach to decipher pristane and phytane precursors in sedimentary organic matter. Org Geochem 30:1089–1104

    Article  Google Scholar 

  • Kovats E (1958) Gas-chromatographic characterisation of organic compounds. Part 1. Retention indexes of aliphatic halides, alcohols, aldehydes and ketones. Helv Chim Acta 41:1915–1932

    Article  Google Scholar 

  • Kristen I, Wilkes H, Vieth A, Zink KG, Plessen B, Thorpe J, Oberhänsli H (2009) Biomarker and stable carbon isotope analyses of sedimentary organic matter from Lake Tswaing: evidence for deglacial wetness and early Holocene drought from South Africa. submitted to J. Paleolimn

  • Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev 23:811–831

    Article  Google Scholar 

  • Li JG, Philip RP, Pu F, Allen J (1996) Long-chain alkenones in Qinghai lake sediments. Geochim Cosmochim Acta 60:235–241

    Article  Google Scholar 

  • Lichtfouse E, Derenne S, Mariotti A, Largeau C (1994) Possible algal origin of long chain odd n-alkanes in immature sediments as revealed by distributions and carbon isotope ratios. Org Geochem 22:1023–1027

    Article  Google Scholar 

  • Liu ZH, Henderson ACG, Huang Y (2006) Alkenone-based reconstruction of late-Holocene surface temperature and salinity changes in Lake Qinghai, China. Geophys Res Lett 33:L09707

    Google Scholar 

  • Liu ZH, Henderson ACG, Huang YS (2008) Regional moisture source changes inferred from Late Holocene stable isotope records. Adv Atmos Sci 25:1021–1028

    Article  Google Scholar 

  • Lucas WJ, Berry JA (1985) Inorganic carbon transport in aquatic photosynthetic organisms. Physiol Plant 65:539–543

    Article  Google Scholar 

  • Mischke S, Kramer M, Zhang C, Shang H, Herzschuh U, Erzinger J (2008) Reduced early Holocene moisture availability in the Bayan Har Mountains, northeastern Tibetan Plateau, inferred from a multi-proxy lake record. Palaeogeogr Palaeoclimatol Palaeoecol 267:59–76

    Article  Google Scholar 

  • Morill C, Overpeck JT, Cole JE (2003) A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. Holocene 13:465–476

    Article  Google Scholar 

  • Mügler I, Gleixner G, Mäusbacher R, Daut G, Schütt B, Berking J, Schwalb A, Schwark L, Xu B, Yao T, Zhu L, Yi C (2009) A multi-proxy approach to reconstruct hydrological changes and Holocene climate development of Nam Co, Central Tibet. J Paleolimn. doi 10.1007/s10933-009-9357-0

  • Papadimitrou S, Kennedy H, Kennedy DP, Borum J (2005) Seasonal and spatial variation in the organic carbon and nitrogen concentration and their stable isotopic composition in Zostera marina (Denmark). Limnol Oceanogr 50:1084–1095

    Google Scholar 

  • Pease TK, Van Vleet ES, Barre JS, Dickins HD (1998) Simulated degradation of glyceryl ethers by hydrous and flash pyrolysis. Org Geochem 29:979–988

    Article  Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide, volume 1 and 2: biomarkers and isotopes in the petroleum exploration and earth history. Cambridge University Press, Cambridge

    Google Scholar 

  • Prins HBA, Elzenga JTM (1989) Bicarbonate utilization: function and mechanism. Aquat Bot 34:59–83

    Article  Google Scholar 

  • Radke M, Willsch H, Welte DH (1980) Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography. Anal Chem 52:406–411

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CHJ, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Bronk Ramsey C, Reimer RW, Plicht JVD, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058

    Google Scholar 

  • Risatti JB, Rowland SJ, Yon DA, Maxwell JR (1984) Stereochemical studies of acyclic isoprenoids-XII. Lipids of methanogenic bacteria and possible contributions to sediments. Org Geochem 6:93–103

    Article  Google Scholar 

  • Rohmer M, Bouvier-Nave P, Ourisson G (1984) Distribution of hopanoid triterpenes in prokaryotes. J Gen Microbiol 130:1137–1150

    Google Scholar 

  • Rowland SJ, Robson JN (1990) The widespread occurrence of highly branched acyclic C20, C25 and C30 hydrocarbons in recent sediments and biota—a review. Mar Environ Res 30:191–216

    Article  Google Scholar 

  • Rowland SJ, Yon DA, Lewis CA, Maxwell JR (1985) Occurrence of 2,6,10-trimethyl-7-(3-methylbutyl) dodecane and related hydrocarbons in the green alga Enteromorpha prolifera and sediments. Org Geochem 8:207–213

    Article  Google Scholar 

  • Ruddiman WF, Kutzbach JE (1989) Forcing of Late Cenozoic Northern Hemisphere climate by plateau uplift in southern Asia and the America west. J Geophys Res 94:18409–18427

    Article  Google Scholar 

  • Schaefer H, Whiticar MJ (2008) Potential glacial-interglacial changes in stable carbon isotope ratios of methane sources and sink fractionation. Global Biogeochem Cycles 22:GB1001

    Article  Google Scholar 

  • Schouten S, van der Maarel MJEC, Huber R, Sinninghe Damsté JS (1997) 2, 6, 10, 15, 19-pentamethylicosenes in Methanolobus bombayensis, a marine methanogenic archaeon and Methanosarcina mazei. Org Geochem 26:409–414

    Article  Google Scholar 

  • Schouten S, Rijpstra WIC, Kok M, Hopmans EC, Summons RE, Volkman JK, Sinninghe-Damsté JS (2001) Molecular organic tracers of biogeochemical processes in a saline meromictic lake (Ace Lake). Geochim Cosmochim Acta 65:1629–1640

    Article  Google Scholar 

  • Shen J, Liu XQ, Wang SM, Matsumoto R (2005) Palaeoclimatic changes in the Qinghai Lake area during the last 18, 000 years. Quat Int 136:131–140

    Article  Google Scholar 

  • Sinninghe-Damsté J, Muyzer G, Abbas B, Rampen SW, Massé G, Allard WG, Belt ST, Robert JM, Rowland SJ, Moldowan JM, Barbanti SM, Fago FJ, Denisevich P, Dahl J, Trindade LAF, Schouten S (2004) The rise of the Rhizosolenid diatoms. Science 304:584–587

    Article  Google Scholar 

  • Street-Perrott FA, Ficken KJ, Huang YS, Eglinton G (2004) Late quaternary changes in carbon cycling on Mt. Kenya, East Africa: an overview of the delta C-13 record in lacustrine organic matter. Quat Sci Rev 23:861–879

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters, 2nd edn. Wiley, New York

    Google Scholar 

  • Summons RE, Jahnke LJ, Roksandic Z (1994) Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers. Geochim Cosmochim Acta 58:2853–2863

    Article  Google Scholar 

  • Summons RE, Franzmann PD, Nichols PD (1998) Carbon isotopic fractionation associated with methylotrophic methanogenesis. Org Geochem 28:465–475

    Article  Google Scholar 

  • Thiel V, Peckmann J, Seifert R, Wehrung P, Reitner J, Michaelis W (1999) Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting. Geochim Cosmochim Acta 63:3959–3966

    Article  Google Scholar 

  • Thompson LG (2000) Ice core evidence for climate change in the Tropics: implications for our future. Quat Sci Rev 19:19–35

    Article  Google Scholar 

  • Thompson LG, Yao T, Davis ME, Henderson KA, Mosley-Thompson E, Lin P, Beer J, Synal HA, Cole-Dai J, Bolzan JF (1997) Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core. Science 276:1821–1825

    Article  Google Scholar 

  • Uemura H, Ishiwatari R (1995) Identification of unusual 17β(H)-moret-22(29)-ene in lake sediments. Org Geochem 23:675–680

    Article  Google Scholar 

  • Venkatesan MI, Kaplan IR (1987) Organic geochemistry of Antarctic marine sediments, Part I. Bransfield Strait. Mar Chem 21:347–375

    Article  Google Scholar 

  • Volkman JK, Allen DI, Stevenson PL, Burton HR (1986) Bacterial and algal hydrocarbons in sediments from a saline Antarctic Lake, Ace Lake. Org Geochem 10:671–681

    Article  Google Scholar 

  • Wakeham SG (1990) Algal and bacterial hydrocarbons in particulate matter and interfacial sediment of the Cariaco Trench. Geochim Cosmochim Acta 54:1325–1336

    Article  Google Scholar 

  • Wang FB, Fan CY (1987) Climatic changes in the Qinghai-Xizang (Tibetan) region of China during the Holocene. Quat Res 28:50–60

    Article  Google Scholar 

  • Wang R, Zheng M (1998) Occurence and environmental significance of long-chain alkenones in Tibetan Zabuye Salt Lake, S.W. China. Int J Salt Lake Res 6:281–302

    Google Scholar 

  • Wang R, Brassel SC, Scarpitta SC, Zheng MP, Zhang SC, Hayde PR, Muench LM (2004) Steroids in sediments from Zabuye Salt Lake, western Tibet: diagenetic, ecological or climatic signals? Org Geochem 35:157–168

    Article  Google Scholar 

  • Wang P, Clemens S, Beaufort L, Braconnot P, Ganssen G, Jian Z, Kershaw P, Sarthein M (2005) Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quat Sci Rev 24:595–629

    Article  Google Scholar 

  • Whiticar MJ, Faber E, Schoell M (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation–Isotope evidence. Geochim Cosmochim Acta 50:693–709

    Article  Google Scholar 

  • Wilkes H, Ramrath A, Negendank JFW (1999) Organic geochemical evidence for environmental changes since 34, 000 yrs BP from Lago di Mezzano, central Italy. J Paleolimnol 22:349–365

    Article  Google Scholar 

  • Xu Y, Jaffé R, Wachnicka A, Gaiser EE (2006) Occurrence of C25 highly branched isoprenoids (HBIs) in Florida Bay: paleoenvironmental indicators of diatom-derived organic matter inputs. Org Geochem 37:847–859

    Article  Google Scholar 

  • Yon DA, Ryback G, Maxwell JR (1982) 2, 6, 10-trimethyl-7-(3 methylbutyl)dodecane, a novel sedimentary biological marker compound. Tetrahedron Lett 23:2143–2146

    Article  Google Scholar 

  • Zheng Y, Zhou W, Meyers PA, Xie S (2007) Lipid biomarkers in the Zoige-Hongyuan peat deposit: indicators of Holocene climate changes in West China. Org Geochem 38:1927–1940

    Article  Google Scholar 

  • Zhou J, Wang S, Yang G, Xiao H (2007) Younger Dryas event and cold events in early-mid Holocene: record from the sediment of Erhai Lake. Adv Clim Change Res 3(Suppl):41–44

    Google Scholar 

  • Zhu L, Wu Y, Wang J, Lin X, Ju J, Xie M, Li M, Mäusbacher R, Schwalb A, Daut G (2008) Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan plateau, China. Holocene 18:831–839

    Article  Google Scholar 

Download references

Acknowledgments

We thank Andrea Vieth, Kai Mangelsdorf and Ann-Kathrin Scherf for helpful comments concerning the interpretation of mass spectra and δ13C curves. We thank Martin Zalkow and the lab staff of the Organic Geochemistry section of the GFZ (Anke Sobotta, Cornelia Karger, Kristin Günther, Michael Gabriel and Doreen Noack) for assistance during preparation and analysis of the samples. Further, we acknowledge two anonymous reviewers for their constructive comments on the manuscript. Funding was provided by the German Science Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Aichner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aichner, B., Wilkes, H., Herzschuh, U. et al. Biomarker and compound-specific δ13C evidence for changing environmental conditions and carbon limitation at Lake Koucha, eastern Tibetan Plateau. J Paleolimnol 43, 873–899 (2010). https://doi.org/10.1007/s10933-009-9375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-009-9375-y

Keywords

Navigation