Skip to main content

Advertisement

Log in

A rapid response of testate amoebae and vegetation to inundation of a kettle hole mire

  • original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Our palaeoecological study covers 73 years of history (1929–2002) of a kettle hole peatland inundated by water from a nearby, dammed lake. Testate amoebae, pollen and non-pollen palynomorphs (NPPs) were used to track the shift to wetter conditions in the peatland. Lead-210 was used to try and construct the chronology. We investigated how peatland testate amoebae communities changed since the damming of a nearby river. Furthermore, we evaluated how rapidly local vegetation responded to the increase in wetness, and how vegetation changes correlated with shifts in testate amoebae and NPPs. The Mukrza kettle hole provided palaeoecological evidence of trophic state and hydrological changes since the lake filled with water in 1929. Three stages of development were revealed. The first two were associated with initial inundation, and the third was related to Sphagnum expansion and acidification. Quantitative reconstruction of groundwater level and pH, inferred using testate amoebae, confirmed our hypotheses about changes in hydrology and trophic state. Subfossil desmid remains lend qualitative support to the reconstruction. The ecology of several testate amoeba taxa is discussed in the context of succession and population establishment. There was complete species replacement since the time of inundation. Our investigation has two important applied aspects: (1) it enables prediction of the response of peatlands to a rise in water table on restored sites; and (2) it provides analogues for palaeoclimatological studies. The history of the Mukrza mire is an example of how palaeoecological studies can be used to assess the degree of change in peatlands transformed by human activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amesbury MJ, Charman DJ, Fyfe RM, Langdon PG, West S (2008) Bronze Age upland settlement decline in southwest England: testing the climate change hypothesis. J Archaeol Sci 35:87–98. doi:10.1016/j.jas.2007.02.010

    Article  Google Scholar 

  • Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments Vol 2: basin analysis, coring, and chronological techniques. Kluwer, Dordrecht, pp 171–203

    Google Scholar 

  • Appleby PO, Shotyk W, Frankhauser A (1997) Lead-210 age dating of three peat cores in the Jura Mountains, Switzerland. Water Air Soil Pollut 100:223–231. doi:10.1023/A:1018380922280

    Article  Google Scholar 

  • Belyea LR, Malmer N (2004) Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Glob Change Biol 10:1043–1051

    Article  Google Scholar 

  • Berglund BE, Ralska-Jasiewiczowa M (1986) Pollen analysis and pollen diagrams. In: Berglund BE (ed) Handbook of Holocene paleoecology and paleohydrology. Wiley, Chichester, pp 455–484

    Google Scholar 

  • Blundell A, Barber K (2005) A 2800-year palaeoclimatic record from Tore Hill Moss, Strathspey, Scotland: the need for a multi-proxy approach to peat-based climate reconstructions. Quat Sci Rev 24:1261–1277. doi:10.1016/j.quascirev.2004.08.017

    Article  Google Scholar 

  • Blundell A, Charman DJ, Barber K (2008) Multiproxy late Holocene peat records from Ireland: towards a regional palaeoclimate curve. J Quat Sci 23:59–71. doi:10.1002/jqs.1115

    Article  Google Scholar 

  • Booth RK (2007) Testate amoebae as proxies for mean annual water-table depth in Sphagnum-dominated peatlands of North America. J Quat Sci 23:43–57. doi:10.1002/jqs.1114

    Article  Google Scholar 

  • Booth RK, Jackson ST, Gray CED (2004) Paleoecology and high-resolution paleohydrology of a kettle peatland in upper Michigan. Quat Res 61:1–13. doi:10.1016/j.yqres.2003.07.013

    Article  Google Scholar 

  • Booth RK, Sullivan ME, Sousa VA (2008) Ecology of testate amoebae in a North Carolina pocosin and their potential use as environmental and paleoenvironmental indicators. Ecoscience 15:277–289. doi:10.2980/15-2-3111

    Article  Google Scholar 

  • Charman DJ (2002) Peatlands and environmental change. Wiley, Chichester, 301 pp

    Google Scholar 

  • Charman DJ (2007) Summer water deficit variability controls on peatland water-table changes: implications for Holocene palaeoclimate reconstructions. Holocene 17:217–227. doi:10.1177/0959683607075836

    Article  Google Scholar 

  • Charman D, Blundell A (2007) A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. J Quat Sci 22:209–221. doi:10.1002/jqs.1026

    Article  Google Scholar 

  • Charman DJ, Hendon D, Woodland WA (2000) The identification of testate amoebae (Protozoa: Rhizopoda) in peats. Technical Guide No. 9. Quaternary Research Association, London, 147 pp

    Google Scholar 

  • Charman D, Roe HM, Gerhels WR (2002) Modern distribution of saltmarsh testate amoebae: regional variability of zonation and response to environmental variables. J Quat Sci 17:387–409. doi:10.1002/jqs.703

    Article  Google Scholar 

  • Clarke KJ (2003) Guide to identification of soil protozoa—testate amoebae. Freshwater Biological Association, Ambleside, 40 pp

    Google Scholar 

  • Erdtman G, Berglund BE, Praglowski J (1961) An introduction to a Scandinavian pollen flora. Grana Palynol 2:3–92

    Article  Google Scholar 

  • Escobar J, Brenner M, Whitmore TJ, Kenney WF, Curtis JH (2008) Ecology of testate amoebae (thecamoebians) in subtropical Florida lakes. J Paleolimnol 40:715–731. doi:10.1007/s10933-008-9195-5

    Article  Google Scholar 

  • Faegri K, Iversen J (1989) Texbook of pollen analysis. Wiley, Chichester, 328 pp

    Google Scholar 

  • Flynn WW (1968) The determination of low-levels of polonium-210 in environmental materials. Anal Chim Acta 43:221–227. doi:10.1016/S0003-2670(00)89210-7

    Article  Google Scholar 

  • Gorham E, Rochefort L (2003) Peatland restoration: a brief assessment with special reference to Sphagnum bogs. Wetlands Ecol Manage 11:109–119. doi:10.1023/A:1022065723511

    Article  Google Scholar 

  • Grimm EC (1987) CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35. doi:10.1016/0098-3004(87)90022-7

    Article  Google Scholar 

  • Grimm EC (1992) TILIA/TILIA graph. Version 1.2. Illinois State Museum, Springfield

    Google Scholar 

  • Grospietsch T (1958) Wechseltierchen (Rhizopoden). Kosmos, Stuttgart, 86 pp

    Google Scholar 

  • Heathwaite AL, Göttlich K (eds) (1993) Mires. Process, exploitation and conservation. John Wiley, Chichester, 506 pp

    Google Scholar 

  • Hendon D, Charman DJ (1997) The preparation of testate amoebae (Protozoa: Rhizopoda) samples from peat. Holocene 7:199–205. doi:10.1177/095968369700700207

    Article  Google Scholar 

  • Hendon D, Charman D, Kent M (2001) Palaeohydrological records derived from testate amoebae analysis from peatlands in northern England: within-site variability, between-site comparability and palaeoclimatic implications. Holocene 11:127–148. doi:10.1191/095968301674575645

    Article  Google Scholar 

  • Jankovská V, Komárek J (2000) Indicative value of Pediastrum and other coccal green algae in palaeoecology. Folia Geobot 35:59–82. doi:10.1007/BF02803087

    Article  Google Scholar 

  • Joosten H, Clarke D (2002) Wise use of mires and peatlands—background and principles including a framework for decision-making. International Mire Conservation Group and International Peat Society, Saarijärvi, 304 pp

    Google Scholar 

  • Juggins S (2003) C2 user guide. Software for ecological and palaeoecological data analysis and visualisation. University of Newcastle, Newcastle upon Tyne, 69 pp

    Google Scholar 

  • Komárek J, Jankovská V (2001) Review of the green algal genus Pediastrum; implication for pollen-analytical research. Bibl Phycol 108:1–127

    Google Scholar 

  • Kowalewski G (2001) Transformation of wetlands and lakes at the zone of influence of Koronowski Reservoir. Limnol Rev 1:165–172

    Google Scholar 

  • Kowalewski G (2003) Przeobrażenia jezior i mokradeł w strefie oddziaływania Zbiornika Koronowskiego. Bogucki Wydawnictwo Naukowe, Poznań, 62 pp

    Google Scholar 

  • Laggoun-Défarge F, Mitchell E, Gilbert D, Disnar JR, Comont L, Warner BG, Buttler A (2008) Cut-over peatland regeneration assessment using organic matter and microbial indicators (bacteria and testate amoebae). J Appl Ecol 45:716–727. doi:10.1111/j.1365-2664.2007.01436.x

    Article  Google Scholar 

  • Lamentowicz M, Mitchell EAD (2005a) The ecology of testate amoebae (Protists) in Sphagnum in north-western Poland in relation to peatland ecology. Microb Ecol 50:48–63. doi:10.1007/s00248-004-0105-8

    Article  Google Scholar 

  • Lamentowicz M, Mitchell EAD (2005b) Testate amoebae (Protists) as palaeoenvironmental indicators in peatlands. Pol Geol Inst Spec Pap 16:58–64

    Google Scholar 

  • Lamentowicz M, Tobolski K, Mitchell EAD (2007) Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland. Holocene 17:1185–1196. doi:10.1177/0959683607085123

    Article  Google Scholar 

  • Lamentowicz Ł, Lamentowicz M, Gąbka M (2008a) Testate amoebae ecology and a local transfer function from a peatland in western Poland. Wetlands 28:164–175. doi:10.1672/07-92.1

    Article  Google Scholar 

  • Lamentowicz M, Cedro A, Miotk-Szpiganowicz G, Mitchell EAD, Pawlyta J, Goslar T (2008b) Last millennium palaeoenvironmental changes from a Baltic bog (Poland) inferred from stable isotopes, pollen, plant macrofossils and testate amoebae. Palaeogeogr Palaeoclimatol Palaeoecol 265:93–106. doi:10.1016/j.palaeo.2008.04.023

    Article  Google Scholar 

  • Lamentowicz M, Obremska M, Mitchell EAD (2008c) Autogenic succession, land-use change, and climatic influences on the Holocene development of a kettle hole mire in Northern Poland (Northern Poland). Rev Palaeobot Palynol 151:21–40. doi:10.1016/j.revpalbo.2008.01.009

    Article  Google Scholar 

  • Lamentowicz M, Milecka K, Gałka M, Cedro A, Pawlyta J, Piotrowska N, Lamentowicz Ł, van der Knaap WO (2009) Climate- and human-induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossils, pollen, and tree-rings of pine. Boreas 38:214–229. doi:10.1111/j.1502-3885.2008.00047.x

    Article  Google Scholar 

  • Langdon PG, Barber KE (2005) The climate of Scotland over the last 5000 years inferred from multiproxy peatland records: inter-site correlations and regional variability. J Quat Sci 20:549–566. doi:10.1002/jqs.934

    Article  Google Scholar 

  • Mauquoy D, Engelkes T, Groot MHM, Markesteijn F, Oudejans MG, van der Plicht J, van Geel B (2002) High-resolution records of late-Holocene climate change and carbon accumulation in north-west European ombrotrophic peat bogs. Palaeogeogr Palaeoclimatol Palaeoecol 186:275–310. doi:10.1016/S0031-0182(02)00513-8

    Article  Google Scholar 

  • Mitchell E, Charman D, Warner B (2008a) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodivers Conserv 17:2115–2137. doi:10.1007/s10531-007-9221-3

    Article  Google Scholar 

  • Mitchell EAD, Payne RJ, Lamentowicz M (2008b) Potential implications of differential preservation of testate amoebae shells for paleoenvironmental reconstruction in peatland. J Paleolimnol 40:603–618. doi:10.1007/s10933-007-9185-z

    Article  Google Scholar 

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell Scientific Publication, Oxford, 216 pp

    Google Scholar 

  • Ogden CGR, Hedley H (1980) An atlas of freshwater testate amoebae. British Museum (Natural History) and Oxford University Press (London and Oxford), London, 222 pp

    Google Scholar 

  • Payne RJ, Mitchell EAD (2007) Ecology of testate amoebae from mires in the Central Rhodope Mountains, Greece and development of a transfer function for palaeohydrological reconstruction. Protist 158:159–171. doi:10.1016/j.protis.2006.11.003

    Article  Google Scholar 

  • Payne RJ, Pates JM (2009) Vertical stratification of testate amoebae in the Elatia Mires, northern Greece: palaeoecological evidence for a wetland response to recent climatic change, or autogenic processes? Wetlands Ecol Manage. doi:10.1007/s11273-008-9112-8

    Google Scholar 

  • R Development Core Team (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing. URL http://www.R-project.org., Vienna, Austria

  • Roos-Barraclough F, van der Knaap WO, van Leeuwen JFN, Shotyk W (2004) A Late-glacial and Holocene record of climatic change from a Swiss peat humification profile. Holocene 14:7–19. doi:10.1191/0959683604hl685rp

    Article  Google Scholar 

  • Rydin H, Jeglum J (2006) The biology of peatlands. Oxford University Press, Oxford, 343 pp

    Google Scholar 

  • Shotyk W, Cheburkin AK, Appleby PG, Frankhauser A, Kramers JD (1996) Two thousand on atmospheric arsenic, antimony, and lead deposition recorded in an ombrotrophic peat bog profile, Jura Mountains. Earth Planet Sci Lett 145:E1–E7. doi:10.1016/S0012-821X(96)00197-5

    Article  Google Scholar 

  • Sillasoo Ü, Mauquoy D, Blundell A, Charman D, Blaauw M, Daniell JRG, Toms P, Newberry J, Chambers FM, Karofeld E (2007) Peat multi-proxy data from Männikjärve bog as indicators of late Holocene climate changes in Estonia. Boreas 36:20–37. doi:10.1080/03009480600923360

    Google Scholar 

  • ter Braak CJF, Šmilauer P (1998) CANOCO reference manual and user’s guide to Canoco for windows software for Canonical community ordination (version 4). Centre for Biometry, Wageningen, 352 pp

    Google Scholar 

  • Tobolski K (2003) Torfowiska, na przykładzie Ziemi Świeckiej (Peatlands—an example of Świecie area). Towarzystwo Przyjaciół Dolnej Wisły, Świecie, 255 pp (in Polish)

    Google Scholar 

  • Turetsky MR, Manning SW, Wieder RK (2004) Dating recent peat deposits. Wetlands 24:324–356. doi:10.1672/0277-5212(2004)024[0324:DRPD]2.0.CO;2

    Article  Google Scholar 

  • van der Linden M, Vickery E, Charman DJ, van Geel B (2008) Effects of human impact and climate change during the last 350 years recorded in a Swedish raised bog deposit. Palaeogeogr Palaeoclimatol Palaeoecol 262:1–31. doi:10.1016/j.palaeo.2008.01.018

    Article  Google Scholar 

  • Wanner M, Elmer M, Kazda M, Xylander WER (2008) Community assembly of terrestrial testate amoebae: How is the very first beginning characterized? Microb Ecol 56:43–54. doi:10.1007/s00248-007-9322-2

    Article  Google Scholar 

  • Weisse T (2008) Distribution and diversity of aquatic protists: an evolutionary and ecological perspective. Biodivers Conserv 17:243–259. doi:10.1007/s10531-007-9249-4

    Article  Google Scholar 

  • Weltzin JF, Harth C, Bridgham SD, Pastor J, Vonderharr M (2001) Production and microtopography of bog bryophytes: response to warming and water-table manipulations. Oecologia 128:557–565. doi:10.1007/s004420100691

    Article  Google Scholar 

  • Wilmshurst JM, McGlone M, Charman DJ (2002) Holocene vegetation and climate change in southern New Zealand: linkages between forest composition and quantitative surface moisture reconstructions from an ombrotrophic bog. J Quat Sci 17:653–666. doi:10.1002/jqs.689

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by a research grant from the Polish Ministry of Science and Higher Education (No. 2PO4G04929) (PI Milena Obremska). Mariusz Lamentowicz was funded by the above-mentioned grant as well as another grant from the Polish Ministry of Science and Higher Education (No. 2PO4G03228). We are indebted to Kazimierz Tobolski, and to Krystyna Milecka for inspiration and discussions. We thank David Wilkinson, Richard Payne and Mark Brenner for helpful remarks. We also thank Charlotte Vandenberghe and Sylwia Ufnalska for improving the English. Further funding to ML by Foundation for Polish Science (FNP) (Outgoing Fellowship KOLUMB) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Lamentowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamentowicz, M., Obremska, M. A rapid response of testate amoebae and vegetation to inundation of a kettle hole mire. J Paleolimnol 43, 499–511 (2010). https://doi.org/10.1007/s10933-009-9347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-009-9347-2

Keywords

Navigation