Skip to main content
Log in

The temporal record and sources of atmospherically deposited fly-ash particles in Lake Akagi-konuma, a Japanese mountain lake

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Fly-ash particles comprising spheroidal carbonaceous particles (SCP) and inorganic ash spheres (IAS), produced from industrial fossil-fuel combustion, are found in lake sediments throughout the world where they provide an historical record of atmospheric pollutant deposition. These particles have been widely used to assess the temporal and spatial distribution of industrial atmospheric pollution in both freshwater and terrestrial environments in Europe and the USA. However, there have been very few palaeolimnological fly-ash studies undertaken in Japan and none in Japanese mountain lakes. Here, we present the historical SCP and IAS records from a radiometrically dated sediment core taken from Lake Akagi-konuma (36°31′ 54″N, 139°11′ 32″E; elevation 1,470 m) located 100 km north-west of Tokyo. Meteorological data and back trajectory analyses confirm potential sources both within Japan and further afield in China and South Korea. SCP contamination began in the 1950s and increased rapidly to a peak in the mid-1980s. It is thought this represents contamination of Japanese origin, principally oil-fired power stations within 150 km of the lake. The profile of IAS, almost solely coal-derived, shows a rapid increase in the 1970s, in contrast to the record of coal consumption in Japan. The IAS record is therefore thought to reflect long-range transport from coal combustion sources in eastern China which started to expand in the 1970s. This raises concerns over the potential impact on Japanese mountain areas from recent rapid increases in, and predicted acceleration of, emissions from this industrial process. The scale of SCP contamination recorded in Lake Akagi-konuma is equivalent to moderately impacted mountain lakes in Europe, but is at the upper end of the range for remote lakes in the western United States.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agency of Natural Resources and Energy (1995) Handbook of energy and economic statistics in Japan. The Energy Conservation Center, Tokyo, Japan

    Google Scholar 

  • Appleby PG, Oldfield F (1978) The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8. doi:10.1016/S0341-8162(78)80002-2

    Article  Google Scholar 

  • Bellis DJ, Satake K, Inagaki M, Zeng J, Oizumi T (2005) Seasonal and long-term change in lead deposition in central Japan: evidence for atmospheric transport from continental Asia. Sci Total Environ 341:149–158. doi:10.1016/j.scitotenv.2004.09.038

    Article  Google Scholar 

  • Bindler R, Renberg I, Appleby PG, Anderson NJ, Rose NL (2001) Mercury accumulation rates and spatial patterns in lake sediments from west Greenland: a coast to ice margin transect. Environ Sci Technol 35:1736–1741. doi:10.1021/es0002868

    Article  Google Scholar 

  • Boyle JF, Mackay AW, Rose NL, Appleby PG (1998) Sediment heavy metal record in Lake Baikal: natural and anthropogenic sources. J Paleolimnol 20:135–150. doi:10.1023/A:1008051701416

    Article  Google Scholar 

  • Boyle JF, Rose NL, Bennion H, Yang H, Appleby PG (1999) Environmental impacts in the Jianghan plain: evidence from lake sediments. Water Air Soil Pollut 112:21–40. doi:10.1023/A:1005040713678

    Article  Google Scholar 

  • Broman D, Naf C, Wik M, Renberg I (1990) The importance of spheroidal carbonaceous particles for the distribution of particulate polycyclic aromatic hydrocarbons in an estuarine-like urban coastal water area. Chemosphere 21:69–77. doi:10.1016/0045-6535(90)90379-8

    Article  Google Scholar 

  • Chin M, Diehl T, Ginoux P, Malm W (2007) Intercontinental transport of pollution and dust aerosols; implications for regional air quality. Atmos Chem Phys 7:9013–9051

    Article  Google Scholar 

  • Dean WE Jr (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sed Petrol 44:242–248

    Google Scholar 

  • Energy Information Administration (2008) Coal consumption statistics for China. Downloaded from http://tonto.eia.doe.gov/country/img/charts/CH_coal_conc_large.png on 27th June 2008

  • Fernández P, Vilanova RM, Grimalt JO (1999) Sediment fluxes of polycyclic aromatic hydrocarbons in European high altitude mountain lakes. Environ Sci Technol 33:3716–3722. doi:10.1021/es9904639

    Article  Google Scholar 

  • Fernández P, Rose NL, Vilanova RM, Grimalt JO (2002) Spatial and temporal comparison of polycyclic aromatic hydrocarbons and spheroidal carbonaceous particles in remote European lakes. Water Air Soil Pollut Focus 2:261–274. doi:10.1023/A:1020119112013

    Google Scholar 

  • Folger DW (1970) Wind transport of land derived mineral, biogenic and industrial matter over the North Atlantic. Deep-Sea Res 17:337–352

    Google Scholar 

  • Fredriksson K, Martin LR (1963) The origin of black spherules found in Pacific Islands, deep-sea sediments and Antarctic ice. Geochim Cosmochim Acta 27:245–248. doi:10.1016/0016-7037(63)90026-7

    Article  Google Scholar 

  • Griffin JJ, Goldberg ED (1981) Sphericity as a characteristic of solids from fossil-fuel burning in a Lake Michigan sediment. Geochim Cosmochim Acta 45:763–769. doi:10.1016/0016-7037(81)90047-8

    Article  Google Scholar 

  • Grimalt JO, van Drooge BL, Ribes A, Vilanova RM, Fernández P, Appleby P (2004) Persistent organochlorine compounds in soils and sediments of European high altitude mountain lakes. Chemosphere 54:1549–1561. doi:10.1016/j.chemosphere.2003.09.047

    Article  Google Scholar 

  • Henry WM, Knapp KT (1980) Compound forms of fossil-fuel fly-ash emissions. Environ Sci Technol 14:450–456. doi:10.1021/es60164a010

    Article  Google Scholar 

  • Hodge PW, Wright FW, Langway CC (1963) Studies of particles for extraterrestrial origin. 3. Analyses of dust particles from polar ice deposits. J Geophys Res 69:2919–2931. doi:10.1029/JZ069i014p02919

    Article  Google Scholar 

  • Hodge PW, Wright FW, Langway CC (1967) Studies of particles for extraterrestrial origin. 5. Compositions of the interiors of spherules from Arctic and Antarctic ice deposits. J Geophys Res 72:1404–1406. doi:10.1029/JZ072i004p01404

    Article  Google Scholar 

  • Hoshika A, Shiozawa A, Kawana K, Tanimoto T (1991) Heavy metal pollution in sediment from the seto inland sea, Japan. Mar Pollut Bull 23:101–105. doi:10.1016/0025-326X(91)90657-E

    Article  Google Scholar 

  • Ikeda A, Yasuda R, Tono H, Watanabe R, Hatakeyama S, Murano K (1995) An analysis of acid fog and air pollution at Mt. Akagi—focusing on transportation of polluted air mass. J Jpn Soc Air Pollut 30:113–125 in Japanese

    Google Scholar 

  • Koch D, Hansen J (2005) Distant origins of Arctic black carbon: a Goddard Institute for Space Studies ModelE experiment. J Geophys Res 110(D4):D04204. doi:10.1029/2004JD005296

    Article  Google Scholar 

  • Landers DH, Simonich SL, Jaffe DA, Geiser LH, Campbell DH, Schwindt AR, Erway MM et al (2007) The Fate, Transport, and Ecological Impacts of Airborne Contaminants in Western National Parks (USA). EPA/600/R-07/138. U.S. Environmental Protection Agency, Office of Research and Development, NHEERL, Western Ecology Division, Corvallis, Oregon

    Google Scholar 

  • Lefèvre R, Gaudichet A, Billon-Galland MA (1986) Silicate microspherules intercepted in the plume of Etna volcano. Nature 322:817–820. doi:10.1038/322817a0

    Article  Google Scholar 

  • Lefèvre R, Gaudichet A, Legeurn F (1991) Présence de microsphérules chimiquement variées dans les aérosols de certaines fontaines de lave d’Hawai. Comparaison avec l’Etna. C R Acad Sci Paris Ser II 313:105–111

    Google Scholar 

  • McElroy MW, Carr RC, Ensor DS, Markowski GR (1982) Size distribution of fine particles from coal combustion. Science 215:13–18. doi:10.1126/science.215.4528.13

    Article  Google Scholar 

  • Muir DCG, Rose NL (2004) Lake sediments as records of Arctic and Antarctic pollution. In: Pienitz R, Douglas MSV, Smol P (eds) Long-term environmental change in Arctic and Antarctic Lakes. Developments in paleoenvironmental research, vol 8. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 209–239

    Chapter  Google Scholar 

  • Muri G, Wakeham S, Rose NL (2006) Records of atmospheric delivery of pyrolysis-derived pollutants in recent mountain lake sediments of the Julian Alps (NW Slovenia). Environ Pollut 139:461–468. doi:10.1016/j.envpol.2005.06.002

    Article  Google Scholar 

  • Murakami A, Noma Y Yoshikawa S (2006) Analysis of the influence of fossil-fuel combustion using fly-ash particles in sediment cores: Comparison of urban and remote area in Japan. Poster presentation from Holivar 2006 Conference. Natural Climate Variability and Global Warming. Open Science Meeting. University College London, London, UK. 12–15 June 2006

  • Nagafuchi O (2000) Long-range transport of air pollutants and the present condition of forest decline in Yakushima Island. Jpn J Ecol 50:303–309

    Google Scholar 

  • Nagafuchi O, Suda O, Mukai H, Koga M, Kodama Y (1995) Analysis of long-range transported acid aerosol in rime found at Kyushu mountainous regions, Japan. Water Air Soil Pollut 85:2351–2356. doi:10.1007/BF01186185

    Article  Google Scholar 

  • Parkin DW, Phillips DR, Sullivan RAL, Johnson L (1970) Airborne dust collections over the North Atlantic. J Geophys Res 75:1782–1793. doi:10.1029/JC075i009p01782

    Article  Google Scholar 

  • Raask E (1984) Creation, capture and coalescence of mineral species in coal flames. J Inst Energy 57:231–239

    Google Scholar 

  • Renberg I, Wik M (1984) Dating of recent lake sediments by soot particle counting. Verh internat Verein Limnol 22:712–718

    Google Scholar 

  • Rose NL (1990) A method for the selective removal of inorganic ash particles from lake sediments. J Paleolimnol 4:61–67. doi:10.1007/BF00208299

    Article  Google Scholar 

  • Rose NL (1994) A note on further refinements to a procedure for the extraction of carbonaceous fly-ash particles from from sediments. J Paleolimnol 11:201–204. doi:10.1007/BF00686866

    Article  Google Scholar 

  • Rose NL (1996) Inorganic fly-ash spheres as pollution tracers. Environ Pollut 91:245–252. doi:10.1016/0269-7491(95)00044-5

    Article  Google Scholar 

  • Rose NL (2001) Fly-ash particles. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, Vol. 2: Physical and geochemical methods. Kluwer Academic Publishers, Dordrecht, pp 319–349

    Google Scholar 

  • Rose NL, Appleby PG (2005) Regional applications of lake sediment dating by spheroidal carbonaceous particle analysis I. United Kingdom. J Paleolimnol 34:349–361. doi:10.1007/s10933-005-4925-4

    Article  Google Scholar 

  • Rose NL, Juggins S (1994) A spatial relationship between carbonaceous particles in lake sediments and sulphur deposition. Atmos Environ 28:177–183. doi:10.1016/1352-2310(94)90092-2

    Article  Google Scholar 

  • Rose NL, Monteith DT (2005) Temporal trends in spheroidal carbonaceous particle deposition derived from annual sediment traps and lake sediment cores and their relationship with non-marine sulphate. Environ Pollut 137:151–163. doi:10.1016/j.envpol.2004.12.022

    Article  Google Scholar 

  • Rose NL, Harlock S, Appleby PG, Battarbee RW (1995) Dating of recent lake sediments in the United Kingdom and Ireland using spheroidal carbonaceous particle (SCP) concentration profiles. Holocene 5:328–335. doi:10.1177/095968369500500308

    Article  Google Scholar 

  • Rose NL, Juggins S, Watt J (1996) Fuel-type characterisation of carbonaceous fly-ash particles using EDS-derived surface chemistries and its application to particles extracted from lake sediments. Proc R Soc Lond 452:881–907 Series A.

    Article  Google Scholar 

  • Rose NL, Juggins S, Watt J (1999a) The characterisation of carbonaceous fly-ash particles from major European fossil-fuel types and applications to environmental samples. Atmos Environ 33:2699–2713. doi:10.1016/S1352-2310(98)00312-4

    Article  Google Scholar 

  • Rose NL, Harlock S, Appleby PG (1999b) The spatial and temporal distributions of spheroidal carbonaceous fly-ash particles (SCP) in the sediment records of European mountain lakes. Water Air Soil Pollut 113:1–32. doi:10.1023/A:1005073623973

    Article  Google Scholar 

  • Rose NL, Rose CL, Boyle JF, Appleby PG (2004) Lake sediment evidence for local and remote sources of atmospherically deposited pollutants on Svalbard. J Paleolimnol 31:499–513. doi:10.1023/B:JOPL.0000022548.97476.39

    Article  Google Scholar 

  • Sakata M, Marumoto K, Narukawa M, Asakura K (2006) Regional variations in wet and dry deposition fluxes of trace elements in Japan. Atmos Environ 40:521–531. doi:10.1016/j.atmosenv.2005.09.066

    Article  Google Scholar 

  • Satake K (1988) A handy impact corer for sampling lake surface sediment. Hydrobiology 169:259–264. doi:10.1007/BF00007549

    Article  Google Scholar 

  • United Nations Department for Economic and Social Information and Policy Analysis (1995) Energy Statistics Yearbook 1993. United Nations, New York

  • Watt JD, Thorne DJ (1965) Composition and pozzolanic properties of pulverised fuel ashes from some British power stations and properties of their component particles. J Appl Chem 15:585–594

    Article  Google Scholar 

  • Wik M, Renberg I (1991) Spheroidal carbonaceous particles as a marker for recent sediment distribution. Hydrobiology 214:85–90. doi:10.1007/BF00050936

    Article  Google Scholar 

  • Wik M, Renberg I (1996) Environmental records of carbonaceous fly-ash particles from fossil-fuel combustion. J Paleolimnol 15:193–206. doi:10.1007/BF00213040

    Article  Google Scholar 

  • Yoshikawa S, Yamaguchi S, Hata A (2000) Paleolimnological investigation of recent acidity changes in Sawanoike Pond, Kyoto, Japan. J Paleolimnol 23:285–304. doi:10.1023/A:1008199830698

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Environment Research Centre, Japan and the Toyota Foundation. We would like to thank members of the Environmental Change Research Centre for their help with laboratory work and Dr. Handong Yang for useful discussion on the radiometric dating. Mr. Dai Kurebayashi-Williams (UCL Department of Geography Cartographic Office) produced the map. We also acknowledge the comments of two anonymous reviewers which helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil L. Rose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagafuchi, O., Rose, N.L., Hoshika, A. et al. The temporal record and sources of atmospherically deposited fly-ash particles in Lake Akagi-konuma, a Japanese mountain lake. J Paleolimnol 42, 359–371 (2009). https://doi.org/10.1007/s10933-008-9281-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-008-9281-8

Keywords

Navigation