Skip to main content
Log in

A 12.8-ka-long palaeoenvironmental record revealed by subfossil ostracod data from lacustrine freshwater tufa in Lake Sinijärv, northern Estonia

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

High-resolution quantitative analysis of ostracod assemblages from 4.3-m-thick freshwater tufa-rich sediments, deposited during the last 12.8 ka in Lake Sinijärv, northern Estonia, yielded information on water level, trophic state conditions, and temperature changes since the late glacial. AMS 14C dates from aquatic mosses provided time constraints on the palaeoenvironmental development of the region. In the ostracod assemblage structure, four faunal zones (OFZ) were determined. The most significant change in the ostracod fauna occurred at 10,590 cal. y BP, when a typical littoral, polythermophilic fauna was replaced by a mostly sublittoral, species-rich meso- to stenothermophilic fauna. The ostracod data indicate two major low-water-level periods in the lake at 12,800–10,590 and 7,600–3,700 cal. y BP. Sediment analysis indicates the most intensive tufa precipitation occurred during these low stand periods, rather than during the warmest climate in Estonia between 8,000 and 4,500 cal. y BP. The late glacial low water level in the groundwater-fed Lake Sinijärv at 12,800–10,590 cal. y BP coincides partly with the regression in the Lake Peipsi basin (14,000–12,100 cal. y BP) and with the last drainage event of the Baltic Ice Lake at 11,600 cal. y BP. The low-water-level period in Lake Sinijärv occurred earlier than in lakes in the SE sector of Scandinavian glaciation. The change from low to high water level in Lake Sinijärv at 10,590 cal. y BP preceded the first post-glacial transgression events in the small lowland lakes of Estonia, southern Sweden, Poles`ye in Belarus, and Valday in NW Russia. In general, the mid-Holocene low-water-level period in Lake Sinijärv between 7,600 and 3,700 cal. y BP is concurrent with the regressions in the lakes of the SE sector of Scandinavian glaciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Plate 1
Fig. 5

Similar content being viewed by others

References

  • Antonsson K, Brooks SJ, Seppä H, Telford RJ, Birks HJB (2006) Quantitative palaeotemperature records inferred from fossil pollen and chrinomid assemblages from Lake Gilljärnen, northern central Sweden. J Quat Sci 21:831–841

    Article  Google Scholar 

  • Arold I (2005) Eesti maastikud. Tartu Ülikooli Kirjastus, Tartu, pp 35–38

    Google Scholar 

  • Bartosh T (1976) Process of carbonate accumulation and stratigraphic position of carbonate deposits in Holocene section of the European part of the USSR. In: Bartosh T, Kabailene M, Raukas A (eds) Palynology in continental and marine geologic investigations. Zinatne Publishers, Riga, pp 23–46

    Google Scholar 

  • Björk J, Andren T, Wastegard S, Possnert G, Schoning K (2002) An event stratigraphy for the last Glacial-Holocene transition in eastern middle Sweden: results from investigations of varved clay and terrestrial sequences. Quat Sci Rev 21:1489–1501

    Article  Google Scholar 

  • Bogmark A (2005) Holocene climate variability and periodicities in south-central Sweden, as interpreted from peat humification data. Holocene 15:387–395

    Article  Google Scholar 

  • Bronk Ramsey C (1995) Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37:425–430

    Google Scholar 

  • Bronk Ramsey C (2001) Development of the radiocarbon program OxCal. Radiocarbon 43:355–363

    Google Scholar 

  • Brooks SJ (2006) Fossil midges (Diptera: Chrinomidae) as palaeoclmiatic indicators for the Eurasian region. Quat Sci Rev 25:1894–1910

    Article  Google Scholar 

  • Danielopol DL, Handl M, Yin Yu (1993) Benthic ostracods in the pre-alpine deep lake Mondsee. Notes on their origin and distribution. In: McKenzie KG, Jones PJ (eds) Ostracoda in the Earth and Life Sciences. Proceedings of the 11th international symposium on Ostracoda. AA Balkema, Rotterdam, Brookfield, pp 465–480

  • Danielopol DL, Horne DJ, Wood RN (1996) Notes on the ecology of Metacypris cordata (Ostracoda, Timiriaseviinae); why does it not colonise groundwater habitats. In: Keen MC (ed) Proceedings of the 2nd European ostracodologists meeting. British Micropalaeontological Society, London, pp 175–179

  • Danielopol DL, Ito E, Wansard G, Kamiya T, Cronin TM, Baltanás A (2002) Techniques for collection and study of Ostracoda. In: Holmes JA, Chivas AR (eds) The ostracoda: applications in quaternary research. Geophysical monograph 131. American Geophysical Union, Washington, DC, pp 65–97

    Google Scholar 

  • Dansgaard W, White JCW, Johnsen SJ (1989) The abrupt termination of the Younger Dryas climate event. Nature 339:532–534

    Article  Google Scholar 

  • Davies P, Griffiths HI (2005) Molluscan and ostracod biostratigraphy of Holocene tufa in the test valley at Bossington, Hampshire, UK. Holocene 15:97–110

    Article  Google Scholar 

  • Davydova NN, Subetto DA, Khomutova VI, Sapelko TV (2001) Late Pleistocene-Holocene paleolimnology of three northwestern Russian lakes. J Paleolimnol 26:37–51

    Article  Google Scholar 

  • Eesti Entsüklopeedia (2002) Eesti üld, 11. Eesti Entsüklopeediakirjastus, Tallinn, 114 pp

  • Gedda B (2001) Environmental and climatic aspects of the early to mid Holocene calcareous tufa and land mollusc fauna in southern Sweden. Lundqua Thesis 45, Department of Quaternary Geology, Lund University, Sweden, 10 pp

  • Goudie AS, Viles HA, Pentecost A (1993) The late-Holocene tufa decline in Europe. Holocene 3:181–186

    Article  Google Scholar 

  • Griffith HI, Evans JG (1995) The Late-glacial and early Holocene colonisation of the British Isles by freshwater ostracods. In: Riha J (ed) Ostracoda and Biostratigraphy. Proceedings of the 12th international symposium on Ostracoda. AA Balkema, Rotterdam, pp 291–302

  • Griffith HI, Pillidge KE, Hill CJ, Evans JG, Learner MA (1996) Ostracod gradients in a calcareous stream: implications for the palaeoecological interpretation of tufas and travertines. Limnologica 26:49–61

    Google Scholar 

  • Hammer Ø, Harper DAT (2006) Paleontological data analysis. Blackwell Publishing Ltd, Oxford, 351 pp

  • Hang T, Miidel A, Pirrus R (1995) Late Weichselian and Holocene water-level changes of Lake Peipsi, eastern Estonia. PACT 50:121–131

    Google Scholar 

  • Hang T, Kalm V, Kihno K, Milkevicius M (2008) Pollen, diatom and plant macrofossil assemblages indicating an exceptionally low water level of Lake Peipsi at the beginning of the Holocene. Hydrobiologia 599:13–21

    Article  Google Scholar 

  • Harrison SP, Digerfeldt G (1993) Europan lakes as palaeohydrological and palaeoclimatic indicators. Quat Sci Rev 12:233–248

    Article  Google Scholar 

  • Heikkilä M, Seppä H (2003) A 11,000 yr palaeotemperature reconstruction from the southern boreal zone in Finland. Quat Sci Rev 22:541–554

    Article  Google Scholar 

  • Heinsalu Ü, Timm T, Karise V (1976) Looduskaitset vajavad allikad Eesti NSV-s. In: Viiding H (ed) Eesti NSV maapõue kaitsest. Valgus, Tallinn, pp 68–95

    Google Scholar 

  • Hughes PD, Mauquoy D, Barber K, Langdon PG (2000) Mire-development pathways and palaeoclimatic records from a full Holocene peat archive at Walton Moss, Cumbria, England. Holocene 10:465–479

    Article  Google Scholar 

  • Kalm V (2006) Pleistocene chronostratigraphy in Estonia, southeastern sector of the Scandinavian glaciation. Quat Sci Rev 25:960–975

    Article  Google Scholar 

  • Koff T, Punning J-M, Sarmaja-Korjonen K, Martma T (2005). Ecosystem response to early and late Holocene lake level changes in Lake Juusa, southern Estonia. Pol J Ecol, 53:553–570

    Google Scholar 

  • Korhola A (1995) Holocene climatic variations in southern Finland reconstructed from peat-initiation data. Holocene 5:43–58

    Article  Google Scholar 

  • Langdon PG, Barber KE (2004) Snapshots in time: precise correlations of peat-based proxy climate records in Scotland using mid-Holocene tephras. Holocene 14:21–33

    Article  Google Scholar 

  • Linkrus E (1998) Põhja-Eesti rannikumadalik ja Soome lahe saared. Eesti Geograafia Selts, Tallinn, 103 pp

  • Lowell TV, Heusser CJ, Andersen BG, Moreno PI, Hauser A, Heusser LE, Schlüchter C, Marchant DR, Denton GH (1995) Interhemispheric correlation of Late Pleistocene glacial events. Science 269:1541–1549

    Article  Google Scholar 

  • Lõokene E (1968a) Allikalubja levik ja iseloom Haanja kõrgustikul. TRÜ Toimetised 213:3–33

    Google Scholar 

  • Lõokene E (1968b) Allikalubja levik ja iseloom Otepää kõrgustikul. TRÜ Toimetised 213:34–57

    Google Scholar 

  • Lõokene E, Utsal K (1971) Mineral composition and age of Holocene fresh-water carbonate sediments in Southern Estonia. Acta et Comm Univ Tartuensis 6:164–194

    Google Scholar 

  • Mäemets A (1977) Eesti NSV järved ja nende kaitse. Valgus, Tallinn, 263 pp

  • Männil RP (1967) Nekatorye tcherty osadkonakoplenija v pozdne- I poslelednikovyh ozerah Estonii. In: Kalesnik SV, Kvasov DD (eds) Istorija ozer severo-zapada. Materialy i simpoziuma po istorii ozer severo-zapada SSSR. Leningrad, pp 300–305 [Some features of accumulation in Lateglacial and Postglacial lakes in Estonia. In Russian]

  • Meisch C (2000) Freshwater Ostracoda of western and central Europe. Süßwasserfauna von Mitteleuropa 8/3. Spektrum, Heidelberg, 522 pp

  • Meyrick RA, Karrow PF (2007) Three detailed, radiocarbon-dated, Holocene tufa and alluvial fan mollusk successions from southern Ontario: the first in northeastern North America. Palaeogeogr Palaeoclimatol Palaeoecol 243:250–271

    Article  Google Scholar 

  • Milius A, Starast H, Ott K, Lindpere A (1997) Hydrochemistry of small lakes. In: Roots O, Talkop R (eds) Estonian environmental monitoring. Environment Information Centre, Tallinna Raamatutrükikoda, Tallinn, pp 78–80

    Google Scholar 

  • Niinemets E (1999) Ostracods. In: Miidel A, Raukas A (eds) Lake Peipsi: Geology. Sulemees Publisher, Tallinn, pp 90–97

    Google Scholar 

  • Niinemets E, Saarse L (2006) Holocene forest dynamics and human impact in southeastern Estonia. Veget Hist Archeobot 16:1–13

    Article  Google Scholar 

  • Punning J-M, Kangur M, Koff T, Possnert G (2003) Holocene lake-level changes and their reflection in the palaeolimnological records of two lakes in Northern Estonia. J Paleolimnol 29:167–178

    Article  Google Scholar 

  • Raukas A, Rõuk AM (1995) Pinnamood ja selle kujunemine. Kõrgustikud. In: Raukas A (ed) Eesti Loodus. Valgus, Tallinn, pp 123–130

    Google Scholar 

  • Reasoner MA, Osborn G, Rutter NW (1994) Age of the crowfoot advance in the Canadian rocky mountains: a glacial event coeval with the Younger Dryas oscillation. Geology 22:439–442

    Article  Google Scholar 

  • Rosentau A, Vassiljev J, Saarse L, Miidel A (2007) Palaeogeographic reconstruction of proglacial lakes in Estonia. Boreas 36:211–221

    Article  Google Scholar 

  • Saarse L, Harrison SP (1992) Holocene lake-level changes in the eastern Baltic region. In: Kaare T, Mardiste H, Merikalju L, Punning JM (eds) Estonia. Man and nature. The Academy of Sciences of Estonia. Estonian Geographical Society, Tallinn, pp 6–20

    Google Scholar 

  • Saarse L, Liiva A (1995) Geology of the Äntu group of lakes. Proc Estonian Acad Sci Geol 44:119–132

    Google Scholar 

  • Saarse L, Heinsalu A, Veski S (1995) Palaeoclimatic interpretation of the Holocene litho-and biostratigraphic proxy data from Estonia. In: Heikinheimo P (ed) International conference on past, present and future climate. Painatukeskus, OY, Helsinki, pp 102–105

    Google Scholar 

  • Savitski L, Kivit N, Boldõreva N, Saaremäe A, Savitskaja Schmied A, Jaštšuk S, Reiners N (1994) Pandivere kõrgustiku vaatluspiirkond. In: Savitskaja L (ed) Põhjavee seisund 1993. aastal. Eesti Geoloogiakeskus, Tallinn, pp 41–49

    Google Scholar 

  • Schmied A (1996). Põhjavee temperatuuri muutused. In: Savitskaja L (ed) Põhjavee seisund 1995. aastal. Eesti Geoloogiakeskus, Tallinn, pp 81–83

    Google Scholar 

  • Seglinš V, Kalnina L, Lācis A (1999) The Lubans plain, Latvia, as a reference area for long term studies of human impact on the environment. In: Miller U, Hackens T, Lang V, Raukas A, Hicks S (eds) Environmental and cultural history of the eastern Baltic region. PACT 57:105–129

  • Seppä H, Poska A (2004) Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns. Quat Res 61:22–31

    Article  Google Scholar 

  • Sohar K (2004) Ida-Eesti järvede areng Pleistotseenis ja vara-Holotseenis ostrakoodiandmestiku põhjal. Thesis. University of Tartu, 55 pp

  • Taylor KC, Lamorey GW, Doyle GA, Alley RB, Grootes PM, Mayewski PA, White JWC, Barlow LK (1993) The “flickering switch” of late Pleistocene climate change. Nature 361:432–436

    Article  Google Scholar 

  • Veski S (1998) Vegetation history, human impact and Palaeogeography of West Estonia. Pollen analytical studies of lake and bog sediments. Striae Societas Upsaliensis Pro Geologica Quaternaria 38, 117 pp

  • Veski S, Seppä H, Ojala AEK (2004) Cold event at 8200 yr B.P. recorded in annually laminated lake sediments in eastern Europe. Geology 32:681–684

    Article  Google Scholar 

  • Zernitskaya VP (1997) The evolution of lakes in the Poles’ye in the late glacial and Holocene. Quat Int 41/42:153–160

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Poznań Radiocarbon Laboratory, Poland, for AMS dating and the Tartu Environment Research Laboratory, Estonia, for Fetotal analyses. Prof. T. Meidla is acknowledged for helpful discussions and consultations. This work was funded by Estonian State Target Foundation projects No. 0182530s03 and 0182531s03. This research received support from the SYNTHESYS Project http://www.synthesys.info/ which is financed by European Community Research Infrastructure Action under the FP6 “Structuring the European Research Area” Programme. Especially, we thank anonymous reviewers for the constructive advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadri Sohar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohar, K., Kalm, V. A 12.8-ka-long palaeoenvironmental record revealed by subfossil ostracod data from lacustrine freshwater tufa in Lake Sinijärv, northern Estonia. J Paleolimnol 40, 809–821 (2008). https://doi.org/10.1007/s10933-008-9200-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-008-9200-z

Keywords

Navigation