Skip to main content

Advertisement

Log in

Siliceous algae-based seasonal temperature inference and indicator pollen tracking ca. 4,000 years of climate/land use dependency in the southern Austrian Alps

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Diatom and chrysophyte cyst-based reconstructions of the dates of spring and autumn lake-mixing enabled us to estimate spring (STanom) and autumn (ATanom) temperature anomalies as well as ice-cover of the last ca. 4,000 years in a lake sediment core (Oberer Landschitzsee, 2,076 m a.s.l.) from the southern slopes of the Austrian Central Alps. The two independently inferred temperature anomalies were significantly correlated. On average, spring and autumn temperatures were lower during the two millennia B.C than during 0–1,300 A.D. Marked spring and autumn temperature minima occurred at about 1,300 and 600 B.C. At about 1,300 A.D, STanom declined again. Spring-temperature anomalies during Roman and Medieval times equaled or slightly exceeded the modern values and paralleled tree-line and glacier fluctuations. The de-coupling of autumn and spring climates, which began during the Medieval period, might indicate changes in major circulation modes. It was assumed that the North-Atlantic influence, triggering winter-rain climate in the Northern Mediterranean, became weaker during Medieval times, resulting in a trend towards warmer autumns and overall more continental climate conditions in the study area. Four pulses of land use, inferred from indicator pollen, occurred during (1) the Early to Late Bronze, (2) the transition from Late Bronze to Early Iron Age (Hallstatt), (3) Late Iron Age (La Tène, Celtic time) to Roman times, and (4) during high to late Medieval times. Climate seemed to be an important, though complex, trigger of Alpine land use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3
Fig. 4
Fig. 5 
Fig. 6 

Similar content being viewed by others

References

  • Agustí-Panareda A, Thompson R (2002) Reconstructing air temperature at eleven remote alpine and arctic lakes in Europe from 1781 to 1997 AD. J Paleolimnol 28:7–23

    Article  Google Scholar 

  • Auer I, Böhm R, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Austrian long-term climate 1767–2000. Multiple Instrumental Climate Time Series from Central Europe (ALOCLIM). Österr Beitr Metereol Geophys, Vol 25, ZAMG, Vienna

  • Auer I, Böhm R, Jurkovic A, Orlik A, Potzmann R, Schöner W, Ungersböck M, Brunetti M, Nanni T, Maugeri M, Briffa K, Jones P, Efthymiadis D, Mestre O, Moisselin JM, Begert M, Brazdil R, Bochnicek O, Cegnar T, Gajic-Capka M, Zaninovic K, Majstorovic Z, Szalai S, Szentimrey T (2005) A new instrumental precipitation dataset in the greater alpine region for the period 1800–2002. Int J Clim 25:139–166

    Article  Google Scholar 

  • Beniston M (1997) Variations of snow-depth and duration in the Swiss Alps over the last 50 years links to changes in large-scale climate forcing. Clim Change 36:281–300

    Article  Google Scholar 

  • Beniston M, Jungo P (2002) Shifts in the distribution of pressure, temperature and moisture and changes in the typical weather patterns in the Alpine region in response to the behavior of the North Atlantic Oscillation. Theor Appl Climatol 71:29–42

    Article  Google Scholar 

  • Beniston M, Keller F, Goyette S (2003) Snow pack in the Swiss Alps under changing climate conditions an empirical approach for climate impact studies. Theor Appl Climatol 74:19–31

    Article  Google Scholar 

  • Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170

    Article  Google Scholar 

  • Birks HJB, Gordon AD (1985) Numerical methods in quaternary pollen analysis. Academic Press, London, pp 317

    Google Scholar 

  • Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801

    Article  Google Scholar 

  • Böhm R (2006) Reconstructing the climate of the 250 years of instrumental records at the northern border of the Mediterranean (The Alps). Nuova Cimento 29:13–19

    Google Scholar 

  • Böhm et al (2003) Der Alpine Niederschlagsdipol ein dominierendes Schwankungsmuster der Klimavariabilität in den scales 100 km – 100 Jahre. 6. Deutsche Klimatagung. Terra Nostra 2003/6, pp 61–65

  • Bortenschlager S (1967) Pollenanalytische Untersuchungen des Seemooses im Lungau (Salzburg). Verh Zool-Bot Ges Wien 107:57–74

    Google Scholar 

  • Bortenschlager S, Öggl K (2000) The man in the ice IV the iceman and his natural environment. Springer Humanbiology, Vienna, Austria, pp 164

    Google Scholar 

  • Bradley RS, Hughes MK, Diaz HF (2003) Climate in medieval time. Science 302:404–405

    Article  CAS  Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density around the Northern hemisphere part 2 spatio-temporal variability and associated climate patterns. Holocene 12:759–789

    Article  Google Scholar 

  • Broecker WS (2001) Was the medieval warm period global? Science 291:1497–1499

    Article  CAS  Google Scholar 

  • Brosch U (2000) Pollenanalytische Untersuchungen zur spät- und postglazialen Vegetationsgeschichte am Seetaler See (Salzburg, Lungau). Mitt Naturwiss Verein Steiermark 130:169–201

    Google Scholar 

  • Büntgen U, Esper J, Frank DC, Nicolussi K and Schmidhalter M (2005) A 1052-year tree-ring proxy for Alpine summer temperatures. Climatic Dynamics(http://dx.doi.org/10.1007/s00382-005-0028-1) 10.1007/s00382-005-0028-1

  • Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880

    Google Scholar 

  • Catalan J, Ventura M, Brancelj A, Granados I, Thies H, Nickus U, Korhola A, Lotter AF, Barbieri A, Stuchlik E, Lien L, Bitusik B, Buchaca T, Camamero L, Goudsmit GH, Kopacek J, Lemcke G, Livingstone DM, Müller B, Rautio M, Sisko M, Sorvari S, Sporka F, Strunecky O, Toro M (2002) Seasonal ecosytem variability in remote mountain lakes implications for detecting climatic signals in sediment records. J Paleolimnol 28:25–46

    Article  Google Scholar 

  • Cleveland WS, Devlin S (1988) Locally-weighted regression an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610

    Article  Google Scholar 

  • Crowley TJ (2000) Causes of climate change over the past 1,000 years. Science 295:270–277

    Article  Google Scholar 

  • Crowley TJ, Lowery ST (2000) How warm was the medieval warm period? Ambio 29:51–54

    Article  Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjörns-Dottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220

    Article  Google Scholar 

  • de-Menocal PB (2001) Cultural responses of climate change during the late holocene. Science 292:667–673

    Article  CAS  Google Scholar 

  • Dopsch H (1981) Aus der Geschichte. In: Müller G (ed) Der Lungau mehr als eine Ferienlandschaft. Gebietsverband Lungau, pp 123

  • Drescher-Schneider R (2003) Pollenanalytische Untersuchungen an einem Bodenprofil im Zusammenhang mit dem urgeschichtlichen Brandopferplatz auf dem Sölkpass (1780 m NN Niedere Tauern Steiermark). In: Mandl F (ed) Sölkpass Ein 6000 Jahre alter Saumpfad über die Alpen. ANISA, pp 89–112

  • Duff K Zeeb B, Smol JP (1995) Atlas of chrysophycean cysts. Kluwer Academic Publishers, Dordrecht, pp 189

    Google Scholar 

  • Ehrendorfer F (1973) Liste der Gefäßpflanzen Mitteleuropas. Gustav Fischer Verlag, Stuttgart, pp 318

    Google Scholar 

  • Esper J Frank DC Wilson RJS, Briffa KR (2005) Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys Res Lett 32:L07711

    Article  Google Scholar 

  • Facher E, Schmidt R (1996) A siliceous chrysophycean cyst-based pH transfer function for Central European lakes. J Paleolimnol 16:275–321

    Article  Google Scholar 

  • Fleischer R and Moucka-Weitzel V (1998) Die römische Strassenstation Immurium-Moosham im Salzburger Lungau. Archäologie in Salzburg, Bd. 4, pp 320

  • Frank DC, Esper J (2005) Characterization and climate response patterns of a high elevation multi species tree-ring network for the European Alps. Dendrochronologia 22:107–121

    Article  Google Scholar 

  • Gams H (1931/32) Die klimatische Begrenzung von Pflanzenarealen und die Verteilung der hygrischen Kontinentalität in den Alpen. Z Ges Erdkunde, Berlin, 9:321–346 and 10:52–56, 178–198

  • Grimm C (1992) TILIA 1.11 and TILIA*Graph 1.17. Illinois State Museum, Springfield

  • Grootes PM, Stuiver M, White JWC, Johnsen S, Jouzel J (1993) Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366:552–554

    Article  CAS  Google Scholar 

  • Hantel M, Ehrendorfer M, Haslinger A (2000) Climate sensitivity of snow cover duration in Austria. Int J Climatol 20:615–640

    Article  Google Scholar 

  • Hausmann S, Lotter AF, van Leeuwen JFN, Ohlendorf C, Lemcke G, Grönlund E, Sturm M (2002) Interactions of climate and land-use documented in the varved sediments of Seebergsee in the Swiss Alps. Holocene 13:477–484

    Google Scholar 

  • Hebert B (2003) Archäologische Untersuchungen auf dem Sölkpass Altwege ein hochalpiner urgeschichtlicher Brandopferplatz und weitere Funde von der Steinzeit bis in die Moderne. In: Mandl F. (ed) Sölkpass Ein 6000 Jahre alter Saumpfad über die Alpen, ANISA, pp 49–88

  • Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618

    Article  Google Scholar 

  • Heegaard E, Lotter A, Birks H (2006) Aquatic biota and the detection of climate change: are there consistent aquatic ecotones? J Paleolimnol 35:507–518

    Article  Google Scholar 

  • Heiri O, Lotter AF, Hausmann S, Kienast F (2003) A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. Holocene 13:477–487

    Article  Google Scholar 

  • Hübl S (1983) Der Lungau Landschaft Geschichte Kultur. Otto Müller Verlag Salzburg, pp 118

  • Johnsen SJ, Clausen HB, Dansgaard W, Gundestrup NS, Hammer CU, Andersen U, Andersen KK, Hvidberg CS, Dahl-Jensen D, Steffensen JP, Shoji H, Sveinbjörnsdóttir AE, White JWC, Jouzel J, Fisher D (1997) The δ18O record along the Greenland Ice Core Project and the problem of possible Eemian climatic instability. J Geophys Res 102:26397–26410

    Article  CAS  Google Scholar 

  • Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42:1–42

    Article  Google Scholar 

  • Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations an extensive revision and an update to 2001. J Climatol 16:206–223

    Article  Google Scholar 

  • Juggins S (2003) C2 user guide software for ecological and palaeecological data analysis and visualisation. University of Newcastle, Newcastle upon Tyne, UK, pp 69

    Google Scholar 

  • Kaiser A, Scheifinger H, Kralik M, Papesch W, Rank D, Stichler W (2001) Links between meteorological conditions and spatial/temporal variations in long-term isotopic records from the Austrian precipitation network. In: H. I.A.E.A. (ed) Study of environmental change using isotope techniques, C&S Paper Series 13/B, IAEA, Vienna, pp 67–77

  • Kamenik C, Schmidt R (2005a) Chrysophyte resting stages a tool for reconstructing winter/spring climate from Alpine lake sediments. Boreas 34:477–489

    Article  Google Scholar 

  • Kamenik C, Schmidt R (2005b) Computer-aided SEM analysis of chrysophyte stomatocysts. Nova Hedwigia, Beiheft 128:269–274

    Google Scholar 

  • Kamenik C, Agustí-Panareda A, Appleby PG, Dearing JA, Shilland EM, Šporka F, Štefková E, Thompson R (2005) Paleolimnological evidence for atmospheric pollution, climate and catchment-related changes in alpine chrysophyte stomatocyst assemblages (Tatra, Slovakia). Nova Hedwigia, Beihefte 128:275–293

    Google Scholar 

  • Kamenik C, Koinig KA, Schmidt R, Appleby PG, Dearing JA, Lami A, Thompson R, Psenner R (2000) Eight-hundred years of environmental changes in a high alpine lake (Gossenköllesee, Tyrol) inferred from sediment records. J Limnol 59:43–52

    Google Scholar 

  • Kamenik C, Schmidt R, Koinig KA, Agustí-Panareda A, Thompson R, Psenner R (2001) The chrysophyte stomatocyst composition in a high alpine lake (Gossenköllesee Tyrol Austria) in relation to seasonality temperature and land-use. Nova Hedwigia, Beihefte 122:1–22

    Google Scholar 

  • Katschner E (1984) Erlebnis Lungau Kleinod im Salzburger Land. Leopold Stocker Verlag, Graz, Stuttgart, pp 200

    Google Scholar 

  • Keusch P (1948) Geschichte des Lungaus. Salzburger Kulturvereinigung, pp 18

  • Kilian W, Müller F and Starlinger F (1994) Die forstlichen Wuchsgebiete Österreichs Eine Naturraumgliederung nach waldökologischen Gesichtspunkten. FBVA, Berichte 82, pp 60

  • Klebel E (1960) Der Lungau. Gesellschaft Salzburger Landeskunde, pp 212

  • Köster D, Pienitz R (2006) Seasonal diatom variability and paleolimnological inferences – a case study. J Paleolimnol 35:395–416

    Article  Google Scholar 

  • Kral F (1981) Zur postglazialen Waldentwicklung in den nördlichen Hohen Tauern mit besonderer Berücksichtigung des menschlichen Einflusses. Akad Wiss Wien, Sitzungsber Math-nat Klasse Abt I 190:193–234

    Google Scholar 

  • Kral F (1985) Zur postglazialen Waldentwicklung in den südlichen Hohen Tauern mit besonderer Berücksichtigung des menschlichen Einflusses. Sitzber Österr Akad Wiss Math-nat Kl Abt I 194:247–289

    Google Scholar 

  • Krammer K (2000) The genus Pinnularia. In: Lange-Bertalot H (ed) Diatoms of Europe, A.R.G. Gantner Verlag K.G., pp 703

  • Krammer K and Lange-Bertalot H (1986–1991) Süßwasserflora von Mitteleuropa, Bacillariophyceae 2/1–4, Gustav Fischer Verlag, Stuttgart, New York

  • Krammer K, Lange-Bertalot H (2000) Süßwasserflora von Mitteleuropa, Bacillariophyceae, Second emended edition. Spectrum Akademischer Verlag, Heidelberg, Berlin

    Google Scholar 

  • Krisai R (1991) Spät- und postglaziale Waldgeschichte des Ost-Lungaus. In: Krisai R, Burgstaller B, Ehmer-Künkele U, Schiffer R and Wurm E (eds) Die Moore des Ost-Lungaues Heutige Vegetation Entstehung Waldgeschichte ihrer Umgebung. Sauteria 5:13–26

  • Livingstone DM, Lotter AF (1998) The relationship between air and water temperatures in lakes of the Swiss Plateau a case study with paleolimnological implications. J Paleolimnol 19:181–198

    Article  Google Scholar 

  • Lotter AF, Juggins S (1991) POLLPROF, TRAN and ZONE programs for plotting editing and zoning pollen and diatom data. INQUA-subcommission for the study of the Holocene working on data handling methods. Newsletter 6:4–6

    Google Scholar 

  • Lotter AF, Birks HJB, Hofmann W, Marchetto A (1997) Modern diatom cladocera chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental condition in the Alps. I climate. J Paleolimnol 18:395–420

    Article  Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability trends and extremes since 1500. Science 303:1499–1503

    Article  CAS  Google Scholar 

  • Magny M (2004) Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on pre-historic human settlements. Quat Int 113:65–79

    Article  Google Scholar 

  • Magny M, Bégeot C, Guiot J, Peyron O (2003) Contrasting patterns of hydrological changes in Europe in response to Holocene climate cooling phases. Quat Sci Rev 22:1589–1596

    Article  Google Scholar 

  • Maise C (1998) Archäoklimatologie Vom Einfluss nacheiszeitlicher Klimavariabilität in der Ur- und Frühgeschichte. Jb Schweiz Gesellschaft für Ur- und Frühgeschichte 81:197–235

    Google Scholar 

  • Mandl F (2003) Almen im Herzen Österreichs Dachsteingebirge Niedere Tauern Salzkammergut Totes Gebirge. ANISA, pp 312

  • Mandl-Neumann H, Mandl F (2003) Der Sölkpass in Geschichte und Gegenwart. In: Mandl F (ed) Sölkpass Ein 6000 Jahre alter Saumpfad über die Alpen. ANISA, 5–43

  • Mangini A, Spötl C, Verdes P (2001) Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record. Earth Planet Sci Lett 235:741–751

    Article  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1999) Northern Hemisphere temperatures during the past millennium inferences uncertainties and limitations. Geophys Res Lett 26:759–762

    Article  Google Scholar 

  • Mudelsee M (2003) Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serially dependent time series. Math Geol 35:651–665

    Article  Google Scholar 

  • Mutschlechner G (1967) Über den Bergbau im Lungau. Mitt Ges für Salzburger Landeskunde 107:129–168

    Google Scholar 

  • Nicolussi K, Patzelt G (2000) Untersuchungen zur Holozänen Gletscherentwicklung von Pasterze und Gepatschferner (Ostalpen). Z Gletsch Glazialgeol 36:1–87

    Google Scholar 

  • Nicolussi K, Kaufmann M, Patzelt G, van der Pflicht J, Thurner A (2005) Holocene tree-line variability in the Kauner Valley, Central Eastern Alps indicated by dendrochronological analysis of living trees and subfossil logs. Veget Hist Archaeobot 14:221–234

    Article  Google Scholar 

  • Nicolussi K, Lumassegger G, Patzelt G, Pindur P and Schiessling P (2004) Aufbau einer holozänen Hochlagen-Jahrring Chronologie für die zentralen Ostalpen Möglichkeiten und erste Ergebnisse. In: Innsbrucker Geographische Gesellschaft (ed), Innsbrucker Jahresbericht 2001/02, 16:114–136

  • Öggl K (1994) The palynological record of human impact in highland zone ecosystems. In: Biagi P, Nandris J (eds) Highland exploitation in southern Europe. Monograf Nat Bresciana 20:107–122

  • Ortner F, Sagmeister R (1992) Lessach im Lungau Geschichte und Gegenwart eines Dorfes. Gemeinde Lessach, pp 383

  • Patzelt G (1995) Die klimatischen Verhältnisse im südlichen Mitteleuropa zur Römerzeit. In: Die ländliche Besiedlung und die Landwirtschaft in den Rhein-Donauprovinzen in der römischen Kaiserzeit. Passauer Universitätsschriften zur Archäologie 2:7–20

  • Patzelt G, Bortenschlager S (1973) Die postglazialen Gletscher- und Klimaschwankungen in der Venedigergruppe (Hohe Tauern Ostalpen). Z Geomorph N.F. Suppl. Bd. 16:25–72

    Google Scholar 

  • Pla S, Catalan J (2005) Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Clim Dynam 24:263–278

    Article  Google Scholar 

  • Rautio M, Sorvari S, Korhola A (2000) Diatom and crustacean zooplankton communities their seasonal variability and representation in the sediments of subarctic Lake Saanajärvi. J Limnol 59:81–96

    Google Scholar 

  • Schmidt R, Kamenik C, Kaiblinger C, Hetzel M (2004a) Tracking Holocene environmental changes in an alpine lake sediment core: application of regional diatom calibration, geochemistry, and pollen. J Paleolimnol 32:177–196

    Article  Google Scholar 

  • Schmidt R, Kamenik C, Lange-Bertalot H, Klee R (2004b) Fragilaria and Staurosira taxa (Bacillariophyceae) from surface sediments of 40 lakes in the central Austrian Alps (Niedere Tauern) in relation to environmental variables. J Limnol 63:171–189

    Google Scholar 

  • Schmidt R, Kamenik C, Tessadri R, Koinig KA (2006) Climatic changes from 12,000 to 4,000 years ago in the Austrian Central Alps tracked by sedimentological and biological proxies of a lake sediment core. J Paleolimnol 35:491–505

    Article  Google Scholar 

  • Schmidt R, Koinig KA, Thompson R, Kamenik C (2002) A multi proxy core study of the last 7000 years of climate and alpine land-use impacts on an Austrian mountain lake (Unterer Landschitzsee Niedere Tauern). Palaeogeogr Palaeoclimatol Palaeoecol 187:101–120

    Article  Google Scholar 

  • Schmidt R, Müller J, Drescher-Schneider R, Krisai R, Szeroczynska K, Baric A (2000) Changes in lake level and trophy at Lake Vrana, a large karstic lake on the Island of Cres (Croatia) with respect to palaeoclimate and anthropogenic impacts during the last approx. 16,000 years. J Limnol 59:113–130

    Google Scholar 

  • Schöner W, Auer I, Böhm R (2000) Climate variability and glacier reaction in the Austrian eastern Alps. Ann Glaciol 31:31–38

    Google Scholar 

  • Siver PA, Hamer JS (1992) Seasonal periodicity of Chrysophyceae and Synurophyceae in a small New England lake implications for paleolimnological research. J Phycol 28:186–198

    Article  Google Scholar 

  • Smol JP, Cumming BF (2000) Tracking long-term changes in climate using algal indicators in lake sediments. J Phycol 36:986–1011

    Article  CAS  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user guide software for canonical community ordination (version 4.5). Biometris, Wageningen and Česke Budejovice, pp 500

  • Thompson R, Kamenik C, Schmidt R (2005) Ultra-sensitive Alpine lakes and climate change. J Limnol 64:139–152

    Google Scholar 

  • Tinner W, Ammann B (2001) Timberline paleoecology in the Alps. PAGES News 9/3:9–11

    Google Scholar 

  • Tinner W, Theurillat JP (2003) Uppermost limit, extent, and fluctuations of the timberline and tree-line ecoline in the Swiss Central Alps during the past 11500 Years. Arch Alp Res 35:158–169

    Article  Google Scholar 

  • Tinner W, Hubschmid P, Wehrli M, Ammann B, Conedera M (1999) Long-term forest fire ecology and dynamics in southern Switzerland. J Ecol 87:273–289

    Article  Google Scholar 

  • Tinner W, Lotter AF, Ammann B, Conedera W, Hubschmid P, van Leeuwen JFN, Wehrli M (2003) Climatic change and contemporaneous land-use phases north and south of the Alps 2300 BC to 800 AD. Quat Sci Rev 22:1447–1460

    Article  Google Scholar 

  • Urban OH (2000) Der lange Weg zur Geschichte Die Urgeschichte Österreichs Österreichs Geschichte bis 15 v. Chr. Verlag Ueberreuter, Wien

  • van Geel B, Buurman J, Waterbolk HT (1996) Archaeological and palaeoecological indications of an abrupt climate change in The Netherlands and evidence for climatological teleconnections around 2650 BP. J Quat Sci 11:451–460

    Article  Google Scholar 

  • von Grafenstein U, Erlenkeuser H, Müller J (1998) The cold event 8,200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Clim Dynam 14:73–81

    Article  Google Scholar 

  • von Grafenstein U, Erlenkeuser H, Brauer A, Jouzel J, Johnsen SJ (1999) A mid-European decadal isotope-climate record from 15,50 to 5000 years B.P. Science 284:1654–1657

    Article  Google Scholar 

  • von Kürsinger I (1853) Lungau Historisch ethnographisch statistisch aus bisher unbenützten urkundlichen Quellen. Oberer’sche Buchhandlung, Salzburg, pp 854

    Google Scholar 

  • Wick L, Tinner W (1997) Vegetation changes and timber-line fluctuations in the Central Alps as indicators of Holocene climate oscillations. Arch Alp Res 29:445–458

    Article  Google Scholar 

  • Wilkinson AN, Zeeb B, Smol JP (2001) Atlas of Chrysophycean cysts, vol II. Kluwer Academic Publishers, Dordrecht, pp 180

    Google Scholar 

  • Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M, Wanner H (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett 32:157–213

    Article  Google Scholar 

Download references

Acknowledgements

The investigations were funded by the Austrian Science Fund (FWF project No. P14912-B06) and by the Austrian Academy of Sciences research program “Alpenforschung” (project CLIM-LAND). We would like to thank H.J.B. Birks and E. Heegaard (Bergen) for providing the age-depth model; UWITEC Mondsee (R. Niederreiter) for sediment coring; H. Höllerer and J. Knoll for their technical assistance; I. Heitzmann, K. Löcker, F. Scharinger for information on the regional history; R. Drescher-Schneider for those on pollen records; R. Böhm and W. Schöner (ZAMG Vienna) on metereology; K. Nicolussi on Austrian tree-ring and timberline records; the local government of Lessach and the Österr. Bundesforste (Tamsweg) for permissions; A. Lyman for correcting the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, R., Kamenik, C. & Roth, M. Siliceous algae-based seasonal temperature inference and indicator pollen tracking ca. 4,000 years of climate/land use dependency in the southern Austrian Alps. J Paleolimnol 38, 541–554 (2007). https://doi.org/10.1007/s10933-007-9089-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-007-9089-y

Keywords

Navigation