Skip to main content
Log in

Comparison of the Intrinsic Dynamics of Aminoacyl-tRNA Synthetases

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Aminoacyl-tRNA synthetases (AARSs) are an important family of enzymes that catalyze tRNA aminoacylation reaction (Ibba and Soll in Annu Rev Biochem 2000, 69:617–650) [1]. AARSs are grouped into two broad classes (class I and II) based on sequence/structural homology and mode of their interactions with the tRNA molecule (Ibba and Soll in Annu Rev Biochem 2000, 69:617–650) [1]. As protein dynamics play an important role in enzyme function, we explored the intrinsic dynamics of these enzymes using normal mode analysis and investigated if the two classes and six subclasses (Ia–c and IIa–c) of AARSs exhibit any distinct patterns of motion. The present study found that the intrinsic dynamics-based classification of these enzymes is similar to that obtained based on sequence/structural homology for most enzymes. However, the classification of seryl-tRNA synthetase was not straightforward; the internal mobility patterns of this enzyme are comparable to both IIa and IIb AARSs. This study revealed only a few general mobility patterns in these enzymes—(1) the insertion domain is generally engaged in anticorrelated motion with respect to the catalytic domain for both classes of AARSs and (2) anticodon binding domain dynamics are partly correlated and partly anticorrelated with respect to other domains for class I enzymes. In most of the class II AARSs, the anticodon binding domain is predominately engaged in anticorrelated motion with respect to the catalytic domain and correlated to the insertion domain. This study supports the notion that dynamic-based classification could be useful for functional classification of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AARS:

Aminoacyl-tRNA synthetase

AlaRS:

Alanyl-tRNA synthetase

ACB:

Anticodon binding

BC:

Bhattacharyya coefficient

CP:

Connective polypeptide

DCCM:

Dynamic cross-correlation matrix

NMA:

Normal mode analysis

PDB:

Protein Data Bank

References

  1. Ibba M, Soll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650

    Article  CAS  Google Scholar 

  2. Giege R, Sissler M, Florentz C (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 26(22):5017–5035

    Article  CAS  Google Scholar 

  3. Loftfield RB, Vanderjagt D (1972) The frequency of errors in protein biosynthesis. Biochem J 128(5):1353–1356

    Article  CAS  Google Scholar 

  4. Freist W, Sternbach H, Pardowitz I, Cramer F (1998) Accuracy of protein biosynthesis: quasi-species nature of proteins and possibility of error catastrophes. J Theor Biol 193(1):19–38

    Article  CAS  Google Scholar 

  5. Laughrea M (1982) On the error theories of aging. A review of the experimental data. Exp Gerontol 17(4):305–317

    Article  CAS  Google Scholar 

  6. Orgel LE (1963) The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc Natl Acad Sci USA 49:517–521

    Article  CAS  Google Scholar 

  7. Jakubowski H, Goldman E (1992) Editing of errors in selection of amino acids for protein synthesis. Microbiol Rev 56(3):412–429

    CAS  Google Scholar 

  8. Mascarenhas A, Martinis SA, An S, Rosen AE, Musier-Forsyth K (2009) Fidelity mechanisms of the aminoacyl-tRNA synthetases. In: RajBhandary UL, Köhrer C (eds) Protein engineering. Springer, New York, pp 155–203

  9. Rossmann MG, Moras D, Olsen KW (1974) Chemical and biological evolution of nucleotide-binding protein. Nature 250(463):194–199

    Article  CAS  Google Scholar 

  10. Rould MA, Perona JJ, Soll D, Steitz TA (1989) Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. Science 246(4934):1135–1142

    Article  CAS  Google Scholar 

  11. Cusack S, Berthet-Colominas C, Hartlein M, Nassar N, Leberman R (1990) A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature 347(6290):249–255

    Article  CAS  Google Scholar 

  12. Ruff M, Krishnaswamy S, Boeglin M, Poterszman A, Mitschler A, Podjarny A, Rees B, Thierry JC, Moras D (1991) Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Science 252(5013):1682–1689

    Article  CAS  Google Scholar 

  13. Cusack S (1995) Eleven down and nine to go. Nat Struct Biol 2(10):824–831

    Article  CAS  Google Scholar 

  14. Burbaum JJ, Schimmel P (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J Biol Chem 266(26):16965–16968

    CAS  Google Scholar 

  15. Cusack S, Hartlein M, Leberman R (1991) Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. Nucleic Acids Res 19(13):3489–3498

    Article  CAS  Google Scholar 

  16. Baldwin AN, Berg P (1966) Purification and properties of isoleucyl ribonucleic acid synthetase from Escherichia coli. J Biol Chem 241(4):831–838

    CAS  Google Scholar 

  17. Eldred EW, Schimmel PR (1972) Investigation of the transfer of amino acid from a transfer ribonucleic acid synthetase–aminoacyl adenylate complex to transfer ribonucleic acid. Biochemistry 11(1):17–23

    Article  CAS  Google Scholar 

  18. Fukai S, Nureki O, Sekine S, Shimada A, Tao J, Vassylyev DG, Yokoyama S (2000) Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Cell 103(5):793–803

    Article  CAS  Google Scholar 

  19. Lincecum TL Jr, Tukalo M, Yaremchuk A, Mursinna RS, Williams AM, Sproat BS, Van Den Eynde W, Link A, Van Calenbergh S, Grotli M et al (2003) Structural and mechanistic basis of pre- and posttransfer editing by leucyl-tRNA synthetase. Mol Cell 11(4):951–963

    Article  CAS  Google Scholar 

  20. Fersht AR, Dingwall C (1979) Evidence for the double-sieve editing mechanism in protein synthesis. Steric exclusion of isoleucine by valyl-tRNA synthetases. Biochemistry 18(12):2627–2631

    Article  CAS  Google Scholar 

  21. Dock-Bregeon A, Sankaranarayanan R, Romby P, Caillet J, Springer M, Rees B, Francklyn CS, Ehresmann C, Moras D (2000) Transfer RNA-mediated editing in threonyl-tRNA synthetase. The class II solution to the double discrimination problem. Cell 103(6):877–884

    Article  CAS  Google Scholar 

  22. Beebe K, De Pouplana LR, Schimmel P (2003) Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability. EMBO J 22(3):668–675

    Article  CAS  Google Scholar 

  23. Wong FC, Beuning PJ, Nagan M, Shiba K, Musier-Forsyth K (2002) Functional role of the prokaryotic proline-tRNA synthetase insertion domain in amino acid editing. Biochemistry 41(22):7108–7115

    Article  CAS  Google Scholar 

  24. Roy H, Ling J, Irnov M, Ibba M (2004) Post-transfer editing in vitro and in vivo by the beta subunit of phenylalanyl-tRNA synthetase. EMBO J 23(23):4639–4648

    Article  CAS  Google Scholar 

  25. Sanford B, Cao BV, Johnson JM, Zimmerman K, Strom AM, Mueller RM, Bhattacharyya S, Musier-Forsyth K, Hati S (2012) Role of coupled-dynamics in the catalytic activity of prokaryotic-like prolyl-tRNA synthetases. Biochemistry 51:2146–2156

    Article  CAS  Google Scholar 

  26. Torres-Larios A, Sankaranarayanan R, Rees B, Dock-Bregeon AC, Moras D (2003) Conformational movements and cooperativity upon amino acid, ATP and tRNA binding in threonyl-tRNA synthetase. J Mol Biol 331(1):201–211

    Article  CAS  Google Scholar 

  27. Cusack S, Yaremchuk A, Tukalo M (2000) The 2 A crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J 19(10):2351–2361

    Article  CAS  Google Scholar 

  28. Yaremchuk A, Tukalo M, Grotli M, Cusack S (2001) A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase. J Mol Biol 309(4):989–1002

    Article  CAS  Google Scholar 

  29. Crepin T, Yaremchuk A, Tukalo M, Cusack S (2006) Structures of two bacterial prolyl-tRNA synthetases with and without a cis-editing domain. Structure 14(10):1511–1525

    Article  CAS  Google Scholar 

  30. Weimer KM, Shane BL, Brunetto M, Bhattacharyya S, Hati S (2009) Evolutionary basis for the coupled-domain motions in Thermus thermophilus leucyl-tRNA synthetase. J Biol Chem 284(15):10088–10099

    Article  CAS  Google Scholar 

  31. Tukalo M, Yaremchuk A, Fukunaga R, Yokoyama S, Cusack S (2005) The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer–editing conformation. Nat Struct Mol Biol 12(10):923–930

    Article  CAS  Google Scholar 

  32. Johnson JM, Sanford BL, Strom AM, Tadayon SN, Lehman BP, Zirbes AM, Bhattacharyya S, Musier-Forsyth K, Hati S (2013) Multiple pathways promote dynamical coupling between catalytic domains in Escherichia coli prolyl-tRNA synthetase. Biochemistry 52(25):4399–4412

    Article  CAS  Google Scholar 

  33. Palencia A, Crepin T, Vu MT, Lincecum TL Jr, Martinis SA, Cusack S (2012) Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Nat Struct Mol Biol 19(7):677–684

    Article  CAS  Google Scholar 

  34. Tan M, Zhu B, Liu RJ, Chen X, Zhou XL, Wang ED (2013) Interdomain communication modulates the tRNA-dependent pre-transfer editing of leucyl-tRNA synthetase. Biochem J 449(1):123–131

    Article  CAS  Google Scholar 

  35. Hensen U, Meyer T, Haas J, Rex R, Vriend G, Grubmuller H (2012) Exploring protein dynamics space: the dynasome as the missing link between protein structure and function. PLoS One 7(5):e33931

    Article  CAS  Google Scholar 

  36. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201

    Article  CAS  Google Scholar 

  37. Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Res 37(Database issue):D387–D392

    Article  CAS  Google Scholar 

  38. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  Google Scholar 

  39. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  CAS  Google Scholar 

  40. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  41. Kitao A, Go N (1999) Investigating protein dynamics in collective coordinate space. Curr Opin Struct Biol 9(2):164–169

    Article  CAS  Google Scholar 

  42. Ma J (2005) Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13(3):373–380

    Article  CAS  Google Scholar 

  43. Go N, Noguti T, Nishikawa T (1983) Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc Natl Acad Sci USA 80(12):3696–3700

    Article  CAS  Google Scholar 

  44. Brooks B, Karplus M (1983) Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci USA 80(21):6571–6575

    Article  CAS  Google Scholar 

  45. Harrison RW (1984) Variational calculation of the normal modes of a large macromolecule: methods and some initial results. Biopolymers 23(12):2943–2949

    Article  CAS  Google Scholar 

  46. Brooks B, Karplus M (1985) Normal modes for specific motions of macromolecules: application to the hinge-bending mode of lysozyme. Proc Natl Acad Sci USA 82(15):4995–4999

    Article  CAS  Google Scholar 

  47. Marques O, Sanejouand YH (1995) Hinge-bending motion in citrate synthase arising from normal mode calculations. Proteins 23(4):557–560

    Article  CAS  Google Scholar 

  48. Tama F, Sanejouand YH (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng 14(1):1–6

    Article  CAS  Google Scholar 

  49. Yildirim Y, Doruker P (2004) Collective motions of RNA polymerases. Analysis of core enzyme, elongation complex and holoenzyme. J Biomol Struct Dyn 22(3):267–280

    Article  CAS  Google Scholar 

  50. Tama F, Brooks CL 3rd (2005) Diversity and identity of mechanical properties of icosahedral viral capsids studied with elastic network normal mode analysis. J Mol Biol 345(2):299–314

    Article  CAS  Google Scholar 

  51. Frank J, Agrawal RK (2000) A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406(6793):318–322

    Article  CAS  Google Scholar 

  52. Hollup SM, Saelensminde G, Reuter N (2005) WEBnm@: a web application for normal mode analysis of proteins. BMC Bioinformatics 6(11):52

    Article  Google Scholar 

  53. Hinsen K, Thomas A, Field MJ (1999) Analysis of domain motions in large proteins. Proteins 34(3):369–382

    Article  CAS  Google Scholar 

  54. Hinsen K, Kneller GR (1999) A simplified force field for describing vibrational protein dynamics over the whole frequency range. J Chem Phys 111(24):10766–10769

    Article  CAS  Google Scholar 

  55. Hinsen K (2000) The molecular modeling toolkit: a new approach to molecular simulations. J Comput Chem 21:79–85

    Article  CAS  Google Scholar 

  56. Van Wynsberghe AW, Cui Q (2006) Interpreting correlated motions using normal mode analysis. Structure 14(11):1647–1653

    Article  Google Scholar 

  57. Bhattacharyya A (1943) On a measure of divergence between two statistical populations defined by their probability distributions. Bull Calc Math Soc 35:99–109

    Google Scholar 

  58. Fuglebakk E, Echave J, Reuter N (2012) Measuring and comparing structural fluctuation patterns in large protein datasets. Bioinformatics 28(19):2431–2440

    Article  CAS  Google Scholar 

  59. Laskowski RA, MacArthur MW, Moss DW, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  60. Ibba M, Francklyn C, Cusack S (eds) (2005) The aminoacyl-tRNA synthetases. Eurekah.com/Landes Biosciences, Georgetown

    Google Scholar 

  61. Sethi A, Eargle J, Black AA, Luthey-Schulten Z (2009) Dynamical networks in tRNA: protein complexes. Proc Natl Acad Sci USA 106(16):6620–6625

    Article  CAS  Google Scholar 

  62. Budiman ME, Knaggs MH, Fetrow JS, Alexander RW (2007) Using molecular dynamics to map interaction networks in an aminoacyl-tRNA synthetase. Proteins 68(3):670–689

    Article  CAS  Google Scholar 

  63. Maguid S, Fernandez-Alberti S, Ferrelli L, Echave J (2005) Exploring the common dynamics of homologous proteins. Application to the globin family. Biophys J 89(1):3–13

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicholas Warren or Sanchita Hati.

Additional information

This work contains results from a biophysical chemistry class project assigned to undergraduate students.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 964 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warren, N., Strom, A., Nicolet, B. et al. Comparison of the Intrinsic Dynamics of Aminoacyl-tRNA Synthetases. Protein J 33, 184–198 (2014). https://doi.org/10.1007/s10930-014-9548-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-014-9548-z

Keywords

Navigation