Skip to main content

Advertisement

Log in

Solubilization and Identification of Hen Eggshell Membrane Proteins During Different Times of Chicken Embryo Development Using the Proteomic Approach

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

A fertilized chicken egg is a unit of life. During hatching, transport of nutrients, including calcium, have been reported from the egg components to the developing embryo. Calcium is mobilized from the eggshell with the involvement of Ca2+-binding proteins. In addition, other unknown proteins may also play some important roles during embryo developing process. Therefore identification and prediction of biological functions of eggshell membrane (ESM) proteins during chick embryo development was conducted by proteome analysis. Comparison of different lysis solutions indicated that the highest ability to extract ESM proteins could be obtained with 1 % sodium dodecyl sulfate in 5 mM Tris–HCl buffer pH 8.8 containing 0.1 % 2-mercaptoethanol. In this study fertilized Cornish chicken eggs were incubated at 37 °C in humidified incubators for up to 21 days. At selected times (days 1, 9, 15 and 21), samples were taken and the ESMs were carefully separated by hand, washed with distilled water, and air-dried at room temperature. The ESM proteins were then solubilized and analyzed by proteome analysis. Sodium dodecyl sulfate polyacrylamide gel electrophoresis combined with high performance liquid chromatography and mass spectrometry revealed 62 proteins in the ESM; only keratin is known ESM protein, 8 of which are egg white proteins and related while 53 others have not previously been reported. Some differences in the types of proteins and their molecular functions were noted in ESM at different incubation times. One protein which was present only at days 15 and 21 of egg incubation was identified as a calcium binding protein i.e. EGF like repeats and discoidin I like domain 3 (EDIL3 homologous protein).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

BSA:

Bovine serum albumin

ESM:

Eggshell membrane

ESI/Q-TOF:

Electrospray ionization/quadupole-time of fight

GOCat:

Gene ontology categorizer

LC-MS–MS:

High performance liquid chromatography–Tandem mass spectrometry

β-NAGase:

β-N-acetylglucosaminidase

NCBI:

National center for biotechnology information

SDS:

Sodium dodecyl sulfate

SDS–PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

References

  1. Ahlborn GJ, Clare DA, Sheldon BW, Kelly RW (2006) Prot J 25:71–81

    Article  CAS  Google Scholar 

  2. Akins RE, Tuan RS (1993) J Cell Sci 105:369–379

    CAS  Google Scholar 

  3. Arias JL, Fernandez MS, Dennis JE, Caplan AI (1991) Connect Tissue Res 26:37–41

    Article  CAS  Google Scholar 

  4. Baker JR, Balch DA (1962) Biochem J 82:352–361

    CAS  Google Scholar 

  5. Balcerzak M, Malinowska A, Thouverey C, Sekrecka A, Dadlez M, Buchet R, Pikula S (2008) Proteomics 8:192–205

    Article  CAS  Google Scholar 

  6. Bingle CD, Craven J (2004) Trends Immunol 25(2):53–55

    Article  CAS  Google Scholar 

  7. Brockway BE, Forster SJ, Freedman RB (1980) Biochem J 191:873–876

    CAS  Google Scholar 

  8. Crooks RJ, Simkiss K (1974) J Exp Biol 61:197–202

    CAS  Google Scholar 

  9. Daengprok W, Garnjanagoonchorn W, Naivikul O, Pornsinlpatip P, Issigonis K, Mine Y (2003) J Agric Food Chem 51:6056–6061

    Article  CAS  Google Scholar 

  10. Denzer AJ, Gesemann M, Schumacher B, Ruegg MA (1995) J Cell Biol 31:1547–1560

    Article  Google Scholar 

  11. Ellis JH, Richards DE, Rogers JH (1991) Cell Tissue Res 264:197–208

    Article  CAS  Google Scholar 

  12. Elsbach P, Weiss J (1998) Curr Opin Immunol 10(45):45–49

    Article  CAS  Google Scholar 

  13. Fernandez MS, Araya M, Arias JL (1997) Matrix Biol 16:13–20

    Article  CAS  Google Scholar 

  14. Gettins P (2002) Chem Rev 102(12):4751–4804

    Article  CAS  Google Scholar 

  15. Gillepie JI, Green Well JR (1988) J Physiol 405:385–395

    Google Scholar 

  16. Gromov P, Gromova I, Celis JE (2006) In: Veenstra TD, Yates JR (eds) Proteomics for biological discovery. Wiley, New Jersey

    Google Scholar 

  17. Guearin-Dubiard C, Pasco M, Mollea D, Deasert C, Croguennec T, Nau F (2006) J Agri Food Chem 54:3901–3910

    Article  Google Scholar 

  18. Hamburger V, Hamilton HL (1951) J Morphol 88:49–92

    Article  Google Scholar 

  19. Heckler EJ, Rancy PC, Kodali VK, Thorpe C (2008) Biochi Bioph Acta 1783:567–577

    Article  CAS  Google Scholar 

  20. Hernandez-Hernandez A, Vidal ML, Gomez-Morales J, Rodriguez-Navarro AB, Labas V, Gautron J, Nys Y, Garcia Ruiz JM (2008) J Cryst Grow 310:1754–1759

    Article  CAS  Google Scholar 

  21. Hinckea MT, Gautron UJ, Panheleux M, Garcia-Ruizc J, McKeed MD, Nysb Y (2000) Matrix Biol 19:443–453

    Article  Google Scholar 

  22. Johnston PM, Comar CL (1955) Am J Physiol 183:365–370

    CAS  Google Scholar 

  23. Jost JP (1993) J Proc Natl Acad Sci USA 89:4684–4688

    Article  Google Scholar 

  24. Kodali VK, Gannon SA, Paramasivam S, Raje S, Polenova T, Thorpe C (2000) PLoS One 6(3):e18187

    Article  Google Scholar 

  25. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  26. Liu S, Piwnica-Worms D, Lieberman M (1990) J Gene Physilo 96:1247–1269

    Article  CAS  Google Scholar 

  27. Liu S, Wang L, Wang N, Wang Y, Shi H, Li H (2009) Biochem Physiol A Mol Integr Physiol 154:135–141

    Article  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    CAS  Google Scholar 

  29. Moreira EF, Adler R (2006) Dev Biol 298:272–284

    Article  CAS  Google Scholar 

  30. Nakano T, Ikawa NI, Ozimek L (2003) Poult Sci 82:510–514

    CAS  Google Scholar 

  31. Nys Y, Gautron J, Garcia-Ruiz JM, Hincke MT (2004) C. R. Palevol 3:549–562

    Article  Google Scholar 

  32. Rabilloud T (2006) In: Veenstra TD, Yates JR (eds) Proteomics for biological discovery. Wiley, New Jersey

    Google Scholar 

  33. Scances CG, Brant G, Ensminger ME (2004) Poultry science. Pearson Education, Inc., New Jersey

    Google Scholar 

  34. Simkiss K (1961) Biol Rev Camb Philos Soc 36:312–367

    Google Scholar 

  35. Simkiss K (1967) Nature 214:84–86

    Article  CAS  Google Scholar 

  36. Takahashi K, Shirai K, Kitamura M, Hattori M (1996) Biosci Biotechnol Biochem 60:1299–1302

    Article  CAS  Google Scholar 

  37. Tuan RS, Carson MJ, Jozefiak JA (1986) J Cell Sci 82:73–84

    CAS  Google Scholar 

  38. Vanhoutteghem A, Londero T, Ghinea N, Djian P (2004) Differentiation 72:123–137

    Article  CAS  Google Scholar 

  39. Whisstock J, Skinner R, Lesk AM (1998) Trends Biochem Sci 23(2):63–67

    Article  CAS  Google Scholar 

  40. Wong M, Hendrix MJC, von der Mark K, Little C, Stern R (1984) Dev Biol 104:28–36

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank The BIOTEC Genome Institute (National Science and Technology Development Agency, Thailand) for their facilities. The support fund for the study was provided by the Graduate School, Kasetsart University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wunwiboon Garnjanagoonchorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaweewong, K., Garnjanagoonchorn, W., Jirapakkul, W. et al. Solubilization and Identification of Hen Eggshell Membrane Proteins During Different Times of Chicken Embryo Development Using the Proteomic Approach. Protein J 32, 297–308 (2013). https://doi.org/10.1007/s10930-013-9487-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9487-0

Keywords

Navigation