Skip to main content
Log in

Characterization of Tannase Protein Sequences of Bacteria and Fungi: An In Silico Study

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The tannase protein sequences of 149 bacteria and 36 fungi were retrieved from NCBI database. Among them only 77 bacterial and 31 fungal tannase sequences were taken which have different amino acid compositions. These sequences were analysed for different physical and chemical properties, superfamily search, multiple sequence alignment, phylogenetic tree construction and motif finding to find out the functional motif and the evolutionary relationship among them. The superfamily search for these tannase exposed the occurrence of proline iminopeptidase-like, biotin biosynthesis protein BioH, O-acetyltransferase, carboxylesterase/thioesterase 1, carbon–carbon bond hydrolase, haloperoxidase, prolyl oligopeptidase, C-terminal domain and mycobacterial antigens families and alpha/beta hydrolase superfamily. Some bacterial and fungal sequence showed similarity with different families individually. The multiple sequence alignment of these tannase protein sequences showed conserved regions at different stretches with maximum homology from amino acid residues 389–469 and 482–523 which could be used for designing degenerate primers or probes specific for tannase producing bacterial and fungal species. Phylogenetic tree showed two different clusters; one has only bacteria and another have both fungi and bacteria showing some relationship between these different genera. Although in second cluster near about all fungal species were found together in a corner which indicates the sequence level similarity among fungal genera. The distributions of fourteen motifs analysis revealed Motif 1 with a signature amino acid sequence of 29 amino acids, i.e. GCSTGGREALKQAQRWPHDYDGIIANNPA, was uniformly observed in 83.3 % of studied tannase sequences representing its participation with the structure and enzymatic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NCBI:

National Center for Biotechnology Information

GRAVY:

Grand average of hydropathicity

Pfam:

Protein family

MAST:

Motif Alignment & Search Tool

BLAST:

Basic Local Alignment Search Tool

PratParam:

Protein parameter

ExPASy:

Expert Protein Analysis System

References

  1. Archambault J, Lacki K, Duvnjak Z (1996) Biotechnol Lett 18:771–774

    Article  CAS  Google Scholar 

  2. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) Nucleic Acids Res 37:W202–W208

    Article  CAS  Google Scholar 

  3. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Jones SG, Khanna A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR (2004) Nucleic Acids Res 32:138–141

    Article  Google Scholar 

  4. Beniwal V, Chokkar V (2010) Asian J Biotechnol 2:46–52

    Article  CAS  Google Scholar 

  5. BLOCK MAKER. http://blocks.fhcrc.org/blocks/blockmkr/make_blocks.html (accessed on 27 January 2012 and 30 January 2012)

  6. Bradoo S, Gupta R, Saxena RK (1996) J Gen Appl Microbiol 42:325–329

    Article  CAS  Google Scholar 

  7. Chávez GM, Rodríguez DLV, Balagurusamy N, Prado BA, Rodríguez R, Contreras JC, Aguilar CN (2010) J Biotech Biochem 6:667–674

    Google Scholar 

  8. CLC Sequence Viewer. http://www.clcbio.com/index.php?id=28 (accessed on 27 January 2012)

  9. Das Mohapatra PK, Mondal KC, Pati BR (2006) Polish J Microbiol 55:297–301

    CAS  Google Scholar 

  10. Das Mohapatra PK, Mondal KC, Pati BR (2007) J Appl Microbiol 102:1462–1467

    Google Scholar 

  11. Deschamps AM, Otuk G, Lebeault JM (1983) J Ferment Technol 61:55–59

    CAS  Google Scholar 

  12. Gough J, Karplus K, Hughey R, Chothia C (2001) J Mol Biol 313:903–919

    Article  CAS  Google Scholar 

  13. Guruprasad K, Reddy BVB, Pandit MW (1990) Protein Eng 4:155–161

    Article  CAS  Google Scholar 

  14. Hadi TA, Banerjee R, Bhattacharyya BC (1994) Bioprocess Eng 11:239–243

    Article  CAS  Google Scholar 

  15. Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) BMC Bioinform 8:460–464

    Article  Google Scholar 

  16. Ikai A (1980) J Biochem 88:1895–1898

    CAS  Google Scholar 

  17. Iwamoto K, Tsuruta H, Nishitaini Y, Osawa R (2008) Syst Appl Microbiol 31:269–277

    Article  CAS  Google Scholar 

  18. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, William HM, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  19. Lekha PK, Lonsane BK (1997) Adv Appl Microbiol 44:215–260

    Article  CAS  Google Scholar 

  20. Mahapatra K, Nanda RK, Bag SS, Banerjee R, Pandey A, Szakacs G (2005) Process Biochem 40:3251–3254

    Article  CAS  Google Scholar 

  21. Mondal KC, Pati BR (2000) J Basic Mcrobiol 40:223–232

    Article  CAS  Google Scholar 

  22. Murugan K, Al-Sohaibani SA (2010) Res J Microbiol 5:262–271

    Article  CAS  Google Scholar 

  23. Noguchi N, Ohashi T, Shiratori T, Narui K, Hagiwara T, Ko M, Watanabe K, Miyahara T, Taira S, Moriyasu F, Sasatsu M (2007) J Gastroenterol 42:346–351

    Article  CAS  Google Scholar 

  24. Osawa R, Kuroiso K, Goto S, Shimizu A (2000) Appl Environ Microbiol 66:3093–3097

    Article  CAS  Google Scholar 

  25. Purohit JS, Ray Dutta J, Nanda KR, Banerjee R (2006) Biores Technol 97:795–801

    Article  CAS  Google Scholar 

  26. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) Nucleic Acids Res 33:116–120

    Article  Google Scholar 

  27. Rogers S, Wells R, Rechsteiner M (1986) Science 234:364–368

    Article  CAS  Google Scholar 

  28. Selwal MK, Yadav A, Selwal KK, Aggarwal NK, Gupta R, Gautam SK (2011) Braz J Microbiol 42:374–387

    Article  CAS  Google Scholar 

  29. Selwal MK, Yadav A, Selwal KK, Aggarwal NK, Gupta R, Gutam SK (2010) World J Microbiol Biotechnol 26:599–605

    Article  CAS  Google Scholar 

  30. Sharma PK, John PJ (2011) Process Biochem 46:240–244

    Article  CAS  Google Scholar 

  31. Sivashanmugam K, Jayaraman G (2011) Afr J Biotechnol 10:1364–1374

    CAS  Google Scholar 

  32. Srivastava A, Kar R (2009) Braz J Microbiol 40:782–789

    Article  CAS  Google Scholar 

  33. Su E, Xia T, Gao L, Dai Q, Zhang Z (2009) Food Sci Tech Int 15:545–552

    Article  CAS  Google Scholar 

  34. Thomas DW, Douglas LB (1995) Proceedings of the third international conference on intelligent systems for molecular biology, pp 402–410

  35. Tuimala J (1989) Cladistics 5:164–166

    Google Scholar 

  36. Yao J, Fan XJ, Lu Y, Liu YH (2011) J Agric Food Chem 59:3812–3818

    Article  CAS  Google Scholar 

  37. Yu XW, Li YQ (2008) Food Technol Biotechnol 46:80–85

    CAS  Google Scholar 

  38. Zeida M, Wieser M, Yoshida T, Sugio T, Nagasawa T (1998) Appl Environ Microbiol 64:4743–4747

    CAS  Google Scholar 

Download references

Acknowledgments

The Department of Biotechnology (DBT), Government of India is acknowledged gratefully for creation of BIF center in Vidyasagar University. The authors are also thankful to University Grants Commission, New Delhi, for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep K. Das Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, A., Jana, A., Pati, B.R. et al. Characterization of Tannase Protein Sequences of Bacteria and Fungi: An In Silico Study. Protein J 31, 306–327 (2012). https://doi.org/10.1007/s10930-012-9405-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-012-9405-x

Keywords

Navigation