Skip to main content
Log in

Structural Bioinformatics of Neisseria meningitidis LD-Carboxypeptidase: Implications for Substrate Binding and Specificity

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Neisseria meningitidis, a gram negative bacterium, is the leading cause of bacterial meningitis and severe sepsis. Neisseria meningitidis genome contains 2,160 predicted coding regions including 1,000 hypothetical genes. Re-annotation of N. meningitidis hypothetical proteins identified nine putative peptidases. Among them, the NMB1620 protein was annotated as LD-carboxypeptidase involved in peptidoglycan recycling. Structural bioinformatics studies of NMB1620 protein using homology modeling and ligand docking were carried out. Structural comparison of substrate binding site of LD-carboxypeptidase was performed based on binding of tetrapeptide substrate ‘l-alanyl-d-glutamyl-meso-diaminopimelyl-d-alanine’. Inspection of different subsite-forming residues showed changeability in the S1 subsite across different bacterial species. This variability was predicted to provide a structural basis to S1-subsite for accommodating different amino acid residues at P1 position of the tetrapeptide substrate ‘l-alanyl-d-glutamyl-meso-diaminopimelyl-d-alanine’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AE-mesoDAP-A:

l-alanyl-d-glutamyl-meso-diaminopimelyl-d-alanine

CMR:

Comprehensive microbial resource

DUF:

Domain of unknown function

GlcNAc:

N-acetyl glucoseamine

GOLD:

Genetic optimization of ligand docking

LdcA:

LD-carboxypeptidase

MurNAc:

N-acetyl muramic acid

Nm:

Neisseria meningitidis

NMB:

Neisseria meningitidis serogroup B

Pa:

Psedumonas aeruginosa

PDB:

Protein data bank

PSIBLAST:

Position specific iterated Basic local alignment search tool

UDP-MurNAc:

Uridine diphosphate-N-acetyl muramic acid

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) J Mol Biol 215:403–410

    CAS  Google Scholar 

  2. Baum EZ, Crespo-Carbone SM, Foleno B, Peng S, Hilliard JJ, Abbanat D, Goldschmidt R, Bush K (2005) Antimicrob Agents Chemother 49(11):4500–4507

    Article  CAS  Google Scholar 

  3. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) J Mol Biol 112(3):535–542

    Article  CAS  Google Scholar 

  4. Connolly M, Noah N (1999) Epidemiol Infect 122:41–49

    Article  CAS  Google Scholar 

  5. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) Genome Res 14(6):1188–1190

    Article  CAS  Google Scholar 

  6. Gerhard W, Thierry L (2005) J Chem Inf Model 45:160–169

    Article  Google Scholar 

  7. Gotschlich EC, Liu TY, Artenstein MS (1969) J Exp Med 129:1367

    Article  CAS  Google Scholar 

  8. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJ, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C (2009) Nucleic Acids Res 37:211–215

    Article  Google Scholar 

  9. Jones DT (1999) J Mol Biol 292(2):195–202

    Article  CAS  Google Scholar 

  10. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  11. Korza HJ, Bochtler M (2005) J Biol Chem 280(49):40802–40812

    Article  CAS  Google Scholar 

  12. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  13. Leguina JI, Quintella JC, de Pedro MA (1994) FEBBS Lett 339:249–252

    Article  CAS  Google Scholar 

  14. Metz R, Henning S, Hammes WP (1986) Arch Microbiol 144(2):175–180

    Article  CAS  Google Scholar 

  15. Park JT, Uehara T (2008) Microbiol Mol Biol Rev 72(2):211–227

    Article  CAS  Google Scholar 

  16. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) Nucleic Acids Res 33:116–120

    Article  Google Scholar 

  17. Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ (2008) Nucleic Acids Res 36:320–325

    Article  Google Scholar 

  18. Rosenstein NE, Perkins BA, Stephens DE, Popovic T, Hughes JM (2001) N Engl J Med 344:1378–1388

    Article  CAS  Google Scholar 

  19. Sali A, Blundell TL (1993) J Mol Biol 234(3):779–815

    Article  CAS  Google Scholar 

  20. Schechter I, Berger M (1967) Biochem Biophys Res Commun 27:157–162

    Article  CAS  Google Scholar 

  21. Schwartz B, Moore PS, Broome CV (1989) Clin Microbiol Rev 2(suppl):118

    Google Scholar 

  22. Sippl MJ (1993) Proteins 17:355–362

    Article  CAS  Google Scholar 

  23. Sivashankari S, Shanmughavel P (2006) Bioinformation 1(8):335–338

    Google Scholar 

  24. Smith TF, Waterman MS (1981) J Mol Biol 147(1):195–197

    Article  CAS  Google Scholar 

  25. Stierand K, Rarey M (2010) J Chem inform 2(Suppl 1):50

    Google Scholar 

  26. Templin MF, Ursinus A, Holtje JV (1999) EMBO J 18:4108–4117

    Article  CAS  Google Scholar 

  27. Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA, Ketchum KA, Hood DW, Peden JF, Dodson RJ, Nelson WC, Gwinn ML, Deboy R, Peterson JD, Hickey EK, Haft DH, Salzberg SL, White O, Fleischmann RD, Dougherty BA, Mason T, Ciecko A, Parksey DS, Blair E, Cittone H, Clark EB, Cotton MD, Utterback TR, Khouri H, Qin H, Vamathevan J, Gill J, Scarlato V, Masignani V, Pizza M, Grandi G, Sun L, Smith HO, Fraser CM, Moxon ER, Rappuli R, Venter JC (2000) Science 287:1809–1815

    Article  CAS  Google Scholar 

  28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  29. Vermont CL, van Dijken HH, Kuipers AJ, van Limpt CJP, CM KeijzersW, van der Ende A, de Groot R, van Alphen L, van den Dobbelsteen GPJM (2003) Infect Immun 71(4):1650–1655

    Article  CAS  Google Scholar 

  30. Vollmer W, Blanot D, de Pedro MA (2008) FEMS Microbiol Rev 32(2):149–167

    Article  CAS  Google Scholar 

  31. Wallace AC, Laskowski RA, Thornton JM (1995) Protein Eng 8(2):127–134

    Article  CAS  Google Scholar 

  32. Zhan C, Fedorov VE, Shi W, Ramagopal UA, Thirumuruhan R, Manjasetty BA, Almo SC, Fiser A, Chance MR, Fedorov AA (2005) Acta Cryst 61:959–963

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kamran Azim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashid, Y., Kamran Azim, M. Structural Bioinformatics of Neisseria meningitidis LD-Carboxypeptidase: Implications for Substrate Binding and Specificity. Protein J 30, 558–565 (2011). https://doi.org/10.1007/s10930-011-9364-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-011-9364-7

Keywords

Navigation