Skip to main content
Log in

Biochemical and Enzymatic Study of Rice BADH Wild-Type and Mutants: An Insight into Fragrance in Rice

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Betaine aldehyde dehydrogenase 2 (BADH2) is believed to be involved in the accumulation of 2-acetyl-1-pyrroline (2AP), one of the major aromatic compounds in fragrant rice. The enzyme can oxidize ω-aminoaldehydes to the corresponding ω-amino acids. This study was carried out to investigate the function of wild-type BADHs and four BADH2 mutants: BADH2_Y420, containing a Y420 insertion similar to BADH2.8 in Myanmar fragrance rice, BADH2_C294A, BADH2_E260A and BADH2_N162A, consisting of a single catalytic-residue mutation. Our results showed that the BADH2_Y420 mutant exhibited less catalytic efficiency towards γ-aminobutyraldehyde but greater efficiency towards betaine aldehyde than wild-type. We hypothesized that this point mutation may account for the accumulation of γ-aminobutyraldehyde/Δ1-pyrroline prior to conversion to 2AP, generating fragrance in Myanmar rice. In addition, the three catalytic-residue mutants confirmed that residues C294, E260 and N162 were involved in the catalytic activity of BADH2 similar to those of other BADHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2AP:

2-Acetyl-1-pyrroline

ALDH:

Aldehyde dehydrogenase

AP-ald:

3-Aminopropionaldehyde

BADH:

Betaine aldehyde dehydrogenase

Bet-ald:

Betaine aldehyde

CD:

Circular dichroism

FPLC:

Fast protein liquid chromatography

GABA:

γ-Aminobutyric acid

GAB-ald:

γ-Aminobutyraldehyde

IPTG:

Isopropyl-β-d-thio-galactoside

SNPs:

Single nucleotide polymorphisms

TLC:

Thin layer chromatography

References

  1. Boch J, Nau-Wagner G, Kneip S, Bremer E (1997) Arch Microbiol 168:282–289

    Article  CAS  Google Scholar 

  2. Bradbury LM, Gillies SA, Brushett DJ, Waters DL, Henry RJ (2008) Plant Mol Biol 68:439–449

    Article  CAS  Google Scholar 

  3. Brooks BR, Brooks CL, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) J Comput Chem 30:1545–1614

    Article  CAS  Google Scholar 

  4. Burstein EA, Vedenkina NS, Ivkova MN (1973) Photochem Photobiol 18:263–279

    Article  CAS  Google Scholar 

  5. Chen S, Yang Y, Shi W, Ji Q, He F, Zhang Z, Cheng Z, Liu X, Xu M (2008) Plant Cell 20:1850–1861

    Article  CAS  Google Scholar 

  6. Falkenberg P, Strom AR (1990) Biochim Biophys Acta 1034:253–259

    CAS  Google Scholar 

  7. Fitzgerald TL, Waters DL, Henry RJ (2009) Plant Biol (Stuttg) 11:119–130

    Article  CAS  Google Scholar 

  8. Förster T (1948) Ann Phys (Leipzig) 2:55–75

    Google Scholar 

  9. Fujiwara T, Hori K, Ozaki K, Yokota Y, Mitsuya S, Ichiyanagi T, Hattori T, Takabe T (2008) Physiol Plant 134:22–30

    Article  CAS  Google Scholar 

  10. Gruez A, Roig-Zamboni V, Grisel S, Salomoni A, Valencia C, Campanacci V, Tegoni M, Cambillau C (2004) J Mol Biol 343:29–41

    Article  CAS  Google Scholar 

  11. Hibino T, Meng YL, Kawamitsu Y, Uehara N, Matsuda N, Tanaka Y, Ishikawa H, Baba S, Takabe T, Wada K, Ishii T, Takabe T (2001) Plant Mol Biol 45:353–363

    Article  CAS  Google Scholar 

  12. Huang L, Gai R (2008) Biosci Trends 2:216–217

    Google Scholar 

  13. Incharoensakdi A, Matsuda N, Hibino T, Meng YL, Ishikawa H, Hara A, Funaguma T, Takabe T, Takabe T (2000) Eur J Biochem 267:7015–7023

    Article  CAS  Google Scholar 

  14. Johansson K, El-Ahmad M, Ramaswamy S, Hjelmqvist L, Jornvall H, Eklund H (1998) Protein Sci 7:2106–2117

    Article  CAS  Google Scholar 

  15. Kovach MJ, Calingacion MN, Fitzgerald MA, McCouch SR (2009) Proc Natl Acad Sci USA 106:14444–14449

    Article  CAS  Google Scholar 

  16. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J App Cryst 26:283–291

    Article  CAS  Google Scholar 

  17. Livingstone JR, Maruo T, Yoshida I, Tarui Y, Hirooka K et al (2003) J Plant Res 116:133–140

    CAS  Google Scholar 

  18. Mitsuya S, Yokota Y, Fujiwara T, Mori N, Takabe T (2009) FEBS Lett 583:3625–3629

    Article  CAS  Google Scholar 

  19. Nagasawa HT, Alexander CS (1976) Can J Biochem 54:539–545

    Article  CAS  Google Scholar 

  20. Niu X, Tang W, Huang W, Ren G, Wang Q, Luo D, Xiao Y, Yang S, Wang F, Lu BR, Gao F, Lu T, Liu Y (2008) BMC Plant Biol 8:100

    Article  Google Scholar 

  21. Oishi H, Ebina M (2005) J Plant Physiol 162:1077–1086

    Article  CAS  Google Scholar 

  22. Sakthivel K, Sundaram RM, Shobha Rani N, Balachandran SM, Neeraja CN (2009) Biotechnol Adv 27:468–473

    Article  CAS  Google Scholar 

  23. Sali A, Blundell TL (1993) J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  24. Sreerama N, Woody RW (2004) Protein Sci 13:100–112

    Article  CAS  Google Scholar 

  25. Trossat C, Rathinasabapathi B, Hanson AD (1997) Plant Physiol 113:1457–1461

    CAS  Google Scholar 

  26. Tylichova M, Kopecny D, Morera S, Briozzo P, Lenobel R, Snegaroff J, Sebela M (2010) J Mol Biol 396:870–882

    Article  CAS  Google Scholar 

  27. Valenzuela-Soto EM, Velasco-Garcia R, Mujica-Jimenez C, Gaviria-Gonzalez LL, Munoz-Clares RA (2003) Chem Biol Interact 143–144:139–148

    Article  Google Scholar 

  28. Velasco-Garcia R, Gonzalez-Segura L, Munoz-Clares RA (2000) Biochem J 352(Pt 3):675–683

    Article  CAS  Google Scholar 

  29. Yu J, Zhou Y, Tanaka I, Yao M (2010) Bioinformatics 26:46–52

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the Faculty of Science, Kasetsart University, the Commission on Higher Education, and the Agricultural Research Development Agency (public organization), Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiattawee Choowongkomon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1081 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wongpanya, R., Boonyalai, N., Thammachuchourat, N. et al. Biochemical and Enzymatic Study of Rice BADH Wild-Type and Mutants: An Insight into Fragrance in Rice. Protein J 30, 529–538 (2011). https://doi.org/10.1007/s10930-011-9358-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-011-9358-5

Keywords

Navigation