Skip to main content
Log in

The Crystal Structure of Hexamer RraA from Pseudomonas Aeruginosa Reveals Six Conserved Protein–Protein Interaction Sites

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

RNase E functions as the rate-limiting enzyme in the global mRNA metabolism as well as in the maturation of functional RNAs. The endoribonuclease, binding to the PNPase trimer, the RhlB monomer, and the enolase dimer, assembles into an RNA degradosome necessary for effective RNA metabolism. The RNase E processing is found to be negatively regulated by the protein modulator RraA which appears to work by interacting with the non-catalytic region of the endoribonuclease and significantly reduce the interaction between RNase E and PNPase, RhlB and enolase of the RNA degradosome. Here we report the crystal structure of RraA from P. aeruginosa to a resolution of 2.0 Å. The overall architecture of RraA is very similar to other known RraAs, which are highly structurally conserved. Gel filtration and dynamic light scattering experiments suggest that the protein regulator is arranged as a hexamer, consistent with the crystal packing of “a dimer of trimer” arrangement. Structure and sequence conservation analysis suggests that the hexamer RraA contains six putative charged protein–protein interaction sites which may serve as binding sites for RNase E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RraA:

regulator of ribonuclease activity A

PaRraA:

regulator of ribonuclease activity A from P. aeruginosa

PNPase:

Polynucleotide Phosphorylase

RhlB:

RNase helicase B

IPTG:

isopropyl β-D-thiogalactopyranoside

PEG:

Polyethylene glycol

MPD:

2-methyl-1,3- propanediol

PDB:

Protein Data Bank

References

  1. Avarind L, Koonin EV (2001) Methods Enzymol 341:3–28

    Article  Google Scholar 

  2. Callaghan AJ, Marcaida MJ, Stead JA, McDowall KJ, Scott WG, Luisi BF (2005) Nature 437:1187–1191

    Article  CAS  Google Scholar 

  3. Carpousis AJ (2007) Annu Rev Microbiol 61:71–87

    Article  CAS  Google Scholar 

  4. Collaborative Computational Project, Number 4. (1994) Acta Crystallogr D Biol Crystallogr 50: 760–763

    Google Scholar 

  5. Conte LL, Chothia C, Janin J (1999) J Mol Biol 285:2177–2198

    Article  Google Scholar 

  6. DeLano WL (2002) DeLano Scientific, San Carlos, CA, USA 2002

  7. Emsley P, Cowtan K (2004) Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  Google Scholar 

  8. Gao J, Lee K, Zhao M, Qiu J, Zhan X, Saxena A, Moore CJ, Cohen SN, Georgiou G (2006) Mol Microbiol 61:394–406

    Article  CAS  Google Scholar 

  9. Haebel PW, Wichman S, Goldstone D, Metcalf P (2001) J Struct Biol 136:162–166

    Article  CAS  Google Scholar 

  10. Honig B, Nicholls A (1995) Science 268:1144–1149

    Article  CAS  Google Scholar 

  11. Jain C, Belasco JG (1995) Genes Dev 9:84–96

    Article  CAS  Google Scholar 

  12. Johnston JM, Arcus VL, Morton CJ, Parker MW, Baker EN (2003) J Bacteriol 185:4057–4065

    Article  CAS  Google Scholar 

  13. Jones S, Thornton JM (1996) Proc Natl Acad Sci USA 93:13–20

    Article  CAS  Google Scholar 

  14. Kaberdin VR, Walsh AP, Jakobsen T, McDowall KJ, von Gabain A (2000) J Mol Biol 301:257–264

    Article  CAS  Google Scholar 

  15. Kuo A, Bowler MW, Zimmer J, Antcliff JF, Doyle DA (2003) J Struct Biol 141:97–102

    Article  CAS  Google Scholar 

  16. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  17. Lee K, Zhan X, Gao J, Qiu J, Feng Y, Meganathan R, Cohen SN, Georgiou G (2003) Cell 114:623–634

    Article  CAS  Google Scholar 

  18. Leroy A, Vanzo NF, Sousa S, Dreyfus M, Carpousis AJ (2002) Mol Microbiol 45:1231–1243

    Article  CAS  Google Scholar 

  19. Liou GG, Jane WN, Cohen SN, Lin NS, Lin-Chao S (2001) Proc Natl Acad Sci USA 98:63–68

    Article  CAS  Google Scholar 

  20. McDowall KJ, Cohen SN (1996) J Mol Biol 255:349–355

    Article  CAS  Google Scholar 

  21. Monzingo AF, Gao J, Qiu J, Georgiou G, Robertus JD (2003) J Mol Biol 332:1015–1024

    Article  CAS  Google Scholar 

  22. Morris RJ, Perrakis A, Lamzin VS (2002) Acta Crystallogr D Biol Crystallogr 58:968–975

    Article  Google Scholar 

  23. Mudd EA, Higgins CF (1993) Mol Microbiol 9:557–568

    Article  CAS  Google Scholar 

  24. Perrakis A, Morris R, Lamzin VS (1999) Nat Struct Biol 6:458–463

    Article  CAS  Google Scholar 

  25. Petrey D, Honig B (2003) Methods Enzymol 374:492–509

    Article  CAS  Google Scholar 

  26. Py B, Higgins CF, Krisch HM, Carpousis AJ (1996) Nature 381:169–172

    Article  CAS  Google Scholar 

  27. Rehse PH, Kuroishi C, Tahirov TH (2004) Acta Crystallogr D Biol Crystallogr 60:1997–2002

    Article  Google Scholar 

  28. Sheinerman FB, Norel R, Honig B (2000) Curr Opin Struct Biol 10:153–159

    Article  CAS  Google Scholar 

  29. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  30. Tong L, Qian C, Davidson W, Massariol MJ, Bonneau PR, Cordingley MG, Lagace L (1997) Acta Crystallogr D Biol Crystallogr 53:682–690

    Article  CAS  Google Scholar 

  31. Vagin A, Teplyakov A (1997) J Appl Cryst 30:1022–1025

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge X-ray facility for Key Laboratory of Structural Biology of Chinese Academy of Science, and to thank Prof. Liwen Niu, Prof. Maikun Teng, and Dr. Zhiqiang Zhu, School of Life Science, the University of Science and Technology of China. Financial support for this project to Deqiang Wang was provided by research grants from the Chinese National Natural Science Foundation (grant Nos. 30600101, 30770481 and 30970563) and Natural Science Foundation of Chongqing (grants Nos.2006BB5275 and 2009BB5413). We are also grateful to Dr. David Worthylake and Louis LeCour in Louisiana State University Health Science Center on paper editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqiang Wang.

Additional information

Jian Tang, Miao Luo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 752 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, J., Luo, M., Niu, S. et al. The Crystal Structure of Hexamer RraA from Pseudomonas Aeruginosa Reveals Six Conserved Protein–Protein Interaction Sites. Protein J 29, 583–590 (2010). https://doi.org/10.1007/s10930-010-9293-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-010-9293-x

Keywords

Navigation