Skip to main content
Log in

Purification and N-Glycosylation Analysis of Melanoma Antigen Dopachrome Tautomerase

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Dopachrome tautomerase (DCT) plays a critical role in lowering the oxidative stress resulting from melanogenesis. Levels of DCT are elevated in melanoma cell lines that are especially resistant to chemotherapy and radiation. DCT is processed as a melanoma antigen and is a potential target for immunotherapy. In order to establish a more complete understanding of the role that DCT may play in the etiology and treatment of melanoma skin cancer, isolation of highly pure and properly processed protein is necessary. Purification of native DCT has been problematic due to a hydrophobic transmembrane anchor and interactions with melanin. In this study, DCT was expressed, without its carboxy-terminal transmembrane region using an Sf9 insect cell protein expression system and its recombinant protein was purified by various chromatographic techniques. Analysis of DCT tryptic peptides by MALDI-TOF/TOF determined N-glycosylation as a primary post-translational modification. Our success in the expression of soluble mammalian DCT and the characterization of N-glycosylation sites is a useful reference toward the comprehensive understanding of the structure/function relationship of mammalian DCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DCT:

Dopachrome tautomerase

MALDI-TOF/TOF:

Matrix-assisted laser desorption/ionization mass spectrometry with tandem time of flight detection

TRP-2:

Tyrosinase-related protein 2 (an alternative name for DCT)

ER:

Endoplasmic reticulum

PMSF:

Phenylmethylsulphonyl fluoride

SDS–PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

DTT:

Dithiothreitol

TFA:

Trifluoroacetic acid

PNGase F:

Peptide N-glycosidase F

Ni–NTA:

Nickel-nitrilotriacetic acid

CID:

Collision induced dissociation

MS:

Mass spectrometry

Da:

Dalton

CAM:

Carboxyamidomethyl

References

  1. Altmann F, Staudacher E, Wilson IB, Marz L (1999) Glycoconj J 16:109–123

    Article  CAS  Google Scholar 

  2. Aroca P, Garcia-Borron JC, Solano F, Lozano JA (1990) Biochim Biophys Acta 1035:266–275

    CAS  Google Scholar 

  3. Aroca P, Solano F, Garcia-Borron JC, Lozano JA (1990) J Biochem Biophys Methods 21:35–46

    Article  CAS  Google Scholar 

  4. Chi A, Valencia JC, Hu ZZ, Watabe H, Yamaguchi H, Mangini NJ, Huang H, Canfield VA, Cheng KC, Yang F, Abe R, Yamagishi S, Shabanowitz J, Hearing VJ, Wu C, Appella E, Hunt DF (2006) J Proteome Res 5:3135–3144

    Article  CAS  Google Scholar 

  5. Chu W, Pak BJ, Bani MR, Kapoor M, Lu SJ, Tamir A, Kerbel RS, Ben-David Y (2000) Oncogene 19:395–402

    Article  CAS  Google Scholar 

  6. Gupta G, Sinha S, Mitra N, Surolia A (2008) Glycoconj J

  7. Irungu J, Go EP, Zhang Y, Dalpathado DS, Liao HX, Haynes BF, Desaire H (2008) J Am Soc Mass Spectrom 19:1209–1220

    Article  CAS  Google Scholar 

  8. James DC, Freedman RB, Hoare M, Ogonah OW, Rooney BC, Larionov OA, Dobrovolsky VN, Lagutin OV, Jenkins N (1995) Biotechnology (N Y) 13:592–596

    Article  CAS  Google Scholar 

  9. Khoshnoodi J, Hill S, Tryggvason K, Hudson B, Friedman DB (2007) J Mass Spectrom 42:370–379

    Article  CAS  Google Scholar 

  10. Li JS, Vavricka CJ, Christensen BM, Li J (2007) Proteomics 7:2557–2569

    Article  CAS  Google Scholar 

  11. Loo T, Patchett ML, Norris GE, Lott JS (2002) Protein Expr Purif 24:90–98

    Article  CAS  Google Scholar 

  12. Lopez M, Coddeville B, Langridge J, Plancke Y, Sautiere P, Chaabihi H, Chirat F, Harduin-Lepers A, Cerutti M, Verbert A, Delannoy P (1997) Glycobiology 7:635–651

    Article  CAS  Google Scholar 

  13. Lu X, Jiang X, Liu R, Zhao H, Liang Z (2008) Cancer Lett 271:129–139

    Article  CAS  Google Scholar 

  14. Negroiu G, Dwek RA, Petrescu SM (2003) The Journal of biological chemistry 278:27035–27042

    Article  CAS  Google Scholar 

  15. Ostankovitch M, Altrich-Vanlith M, Robila V, Engelhard VH (2009) J Immunol 182:4830–4835

    Article  CAS  Google Scholar 

  16. Pak BJ, Lee J, Thai BL, Fuchs SY, Shaked Y, Ronai Z, Kerbel RS, Ben-David Y (2004) Oncogene 23:30–38

    Article  CAS  Google Scholar 

  17. Pak BJ, Li Q, Kerbel RS, Ben-David Y (2000) Melanoma Res 10:499–505

    Article  CAS  Google Scholar 

  18. Pawelek JM, Lerner AB (1978) Nature 276:626–628

    Article  CAS  Google Scholar 

  19. Tomiya N, Narang S, Lee YC, Betenbaugh MJ (2004) Glycoconj J 21:343–360

    Article  CAS  Google Scholar 

  20. Toyofuku K, Wada I, Valencia JC, Kushimoto T, Ferrans VJ, Hearing VJ (2001) Faseb J 15:2149–2161

    Article  CAS  Google Scholar 

  21. Tsukamoto K, Jackson IJ, Urabe K, Montague PM, Hearing VJ (1992) EMBO J 11:519–526

    CAS  Google Scholar 

  22. Umansky V, Abschuetz O, Osen W, Ramacher M, Zhao F, Kato M, Schadendorf D (2008) Cancer Res 68:9451–9458

    Article  CAS  Google Scholar 

  23. Wang N, Daniels R, Hebert DN (2005) Mol Biol Cell 16:3740–3752

    Article  CAS  Google Scholar 

  24. Wang RF, Appella E, Kawakami Y, Kang X, Rosenberg SA (1996) The Journal of experimental medicine 184:2207–2216

    Article  CAS  Google Scholar 

  25. Yeh JC, Seals JR, Murphy CI, van Halbeek H, Cummings RD (1993) Biochemistry 32:11087–11099

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our thanks to Dr. Vincent Hearing for generously providing us with DCT antibodies and Dr. Dorothy Bennett for providing us with melan-a -b and -c cell lines that were used in our preliminary studies. We would also like to thank Peipei Liu and Chuansheng Liu at The Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology for their encouragement and comments on the manuscript. Furthermore, we would like to thank Dr. Rich Helm and the Virginia Tech Mass Spectrometry Incubator (http://www.mass.biochem.vt.edu/) for their assistance with the MALDI-TOF/TOF analysis. This work is supported by College of Agricultural Life Sciences, Virginia Tech and NIH grant AI 19769.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Vavricka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10930_2010_9241_MOESM1_ESM.docx

MALDI-TOF/TOF spectrum of the DCT peptide NECDVCTDELLGAAR, A) with potential fucosylation (additional 146 Da), and B) without modification

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vavricka, C.J., Ray, K.W., Christensen, B.M. et al. Purification and N-Glycosylation Analysis of Melanoma Antigen Dopachrome Tautomerase. Protein J 29, 204–212 (2010). https://doi.org/10.1007/s10930-010-9241-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-010-9241-9

Keywords

Navigation