Skip to main content
Log in

A Novel Arginine Kinase with Substrate Specificity Towards d-arginine

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

We determined the cDNA-derived amino acid sequences of two arginine kinases (AK1, AK2) from the annelid Sabellastarte indica, cloned the cDNAs into pMAL plasmid and expressed them in E. coli. The phylogenetic analyses suggested that Sabellastarte AKs have evolved from a CK-related gene, not from the usual AK gene. The recombinant Sabellastarte AK1 showed a broad specificity towards various guanidine compounds, while the Sabellastarte AK2 mainly showed stronger activity for both d- and l-arginine, a very unique substrate specificity not seen before in usual AKs. We isolated guanidino compounds from the body wall musculature of Sabellastarte, and found that the major compound is d-arginine with a concentration of 4.85 ± 0.51 mmol/kg. From these results, we suggest strongly that in Sabellastarte, d-arginine is the major phosphagen substrate and that the AK2 with substrate specificity towards d-arginine, catalyzes the phosphorylation of d-arginine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AK:

arginine kinase

CK:

creatine kinase

TK:

taurocyamine kinase

GK:

glycocyamine kinase

LK:

lombricine kinase

FDAA:

1–fluoro-2, 4–dinitrophenyl-5-l-alanine amide

MBP:

maltose binding protein; ORF, open reading frame

References

  • Abe H., Yoshikawa N., Sarower M. G., Okada S. (2005). Biol. Pharm. Bull. 28:1571–1577

    Article  CAS  Google Scholar 

  • Borson N. D., Salo W. L., and Drewes L. R. (1992). A lock-docking oligo(dT) primer for 5' and 3' RACE PCR. 2: 144–148

  • Chomczynski P., Sacchi N. (1987). Anal. Biochem. 162:156–159

    Article  CAS  Google Scholar 

  • Compaan D. M., Ellington W. R. (2003). J. Exp. Biol. 206:1545–1556

    Article  CAS  Google Scholar 

  • di Jeso F., Malcovati M., Gaetani M. T., Speranza M. L. (1967). Comp. Biochem. Physiol. 20:607–610

    Article  CAS  Google Scholar 

  • Edmiston P. L., Schavolt K. L., Kersteen E. A., Moore N. R., Borders C. L. (2001). Biochim. Biophys. Acta 1546:291–298

    CAS  Google Scholar 

  • Ellington W. R. (1989). J. Exp. Biol. 143:177–194

    CAS  Google Scholar 

  • Ellington W. R. (2001). Ann. Rev. Physiol. 63:289–325

    Article  CAS  Google Scholar 

  • Felbeck H., Wiley S. (1987). Biol. Bull. 173:252–259

    Article  Google Scholar 

  • Fuchs S. A., Berger R., Klomp L. W., de Koning T. J. (2005). Mol. Genet. Metab. 85:168–180

    Article  CAS  Google Scholar 

  • Fujii N., Saito T. (2004). Chem. Rec. 4:267–278

    Article  CAS  Google Scholar 

  • Hamase K., Morikawa A., Zaitsu K. (2002). J. Chromatogr. B 781:73–91

    Article  CAS  Google Scholar 

  • Lahiri S. D., Wang P. F., Babbitt P. C., McLeish M. J., Kenyon G. L., Allen K. N. (2002). Biochemistry 41:13861–13867

    Article  CAS  Google Scholar 

  • Makisumi S. (1961). J. Biochem. (Tokyo) 49:292–296

    CAS  Google Scholar 

  • Marfey P. (1984). Carlsberg Res. Commun. 49:591–596

    Article  CAS  Google Scholar 

  • Morrison J. F. (1973) In: Boyer, P. C. (ed.), Enzymes, Academic Press, New York, pp. 457–486.

  • Morrison J. F., James E. (1965). Biochem. J. 97:37–52

    CAS  Google Scholar 

  • Nagata Y., Yamamoto K., Shimojo T. (1992). J. Chromatogr. 575:147–152

    Article  CAS  Google Scholar 

  • Robin Y. (1964). Comp. Biochem. Physiol. 12:347–367

    Article  CAS  Google Scholar 

  • Robin Y., Klotz C., Thoai V. N. (1971). Eur. J. Biochem. 21:170–178

    Article  CAS  Google Scholar 

  • Robin Y., Klotz C., Guillou Y., Benyamin Y. (1975). Comp. Biochem. Physiol. B 52:387–392

    Article  CAS  Google Scholar 

  • Rosenberg H., Ennor A., Morrison J. (1956). Biochem. J. 63:153–159

    CAS  Google Scholar 

  • Suzuki T., Furukohri T. (1994). J. Mol. Biol. 237:353–357

    Article  CAS  Google Scholar 

  • Suzuki T., Kawasaki Y., Furukohri T., Ellington W. R. (1997a). Biochim. Biophys. Acta 1343:152–159

    CAS  Google Scholar 

  • Suzuki T., Kawasaki Y., Furukohri T. (1997b). Biochem. J. 328:301–306

    CAS  Google Scholar 

  • Suzuki T., Kawasaki Y., Unemi Y., Nishimura Y., Soga T., Kamidochi M., Yazawa Y., Furukohri T. (1998). Biochim. Biophys. Acta 1388:253–259

    CAS  Google Scholar 

  • Suzuki T., Kamidochi M., Inoue N., Kawamichi H., Yazawa Y., Furukohri T., Ellington W. R. (1999). Biochem. J. 340:671–675

    Article  CAS  Google Scholar 

  • Suzuki T., Yamamoto Y., Umekawa M. (2000a). Biochem. J. 351:579–585

    Article  CAS  Google Scholar 

  • Suzuki T., Fukuta H., Nagato H., Umekawa M. (2000b). J. Biol. Chem. 275:23884–23890

    Article  CAS  Google Scholar 

  • Suzuki T., Mizuta C., Uda K., Ishida K., Mizuta K., Sona S., Compaan D. M., Ellington W. R. (2004). J. Mol. Evol. 59:218–226

    Article  CAS  Google Scholar 

  • Takeuchi M., Mizuta C., Uda K., Fujimoto N., Okamoto M., Suzuki T. (2004). Cell. Mol. Life Sci. 61:110–117

    Article  CAS  Google Scholar 

  • Takigawa Y., Homma H., Lee J. A., Fukushima T., Santa T., Iwatsubo T., Imai K. (1998). Biochem. Biophys. Res. Commun. 248:641–647

    Article  CAS  Google Scholar 

  • Tanaka K., Suzuki T. (2004). FEBS Lett. 573:78–82

    Article  CAS  Google Scholar 

  • Uda K., Suzuki T. (2004). Protein J. 23:53–64

    Article  CAS  Google Scholar 

  • Uda K., Saishoji N., Ichinari S., Ellington W. R., Suzuki T. (2005). FEBS J. 272:3521–3530

    Article  CAS  Google Scholar 

  • Virden R., Watts D. C. (1964). Comp. Biochem. Physiol. 13:161–177

    Article  CAS  Google Scholar 

  • Watts D. C. (1968). In: Van Thoai, N. and Roche, J. (eds.), Homologous Enzymes and Biochemical Evolution, Gordon and Breach, New York, pp. 279–296

  • Wyss M., Kaddurah-Daouk R. (2000). Physiol. Rev. 80:1107–1213

    CAS  Google Scholar 

  • Wyss M., Smeitink J., Wevers R. A., Wallimann T. (1992) .Biochim. Biophys. Acta 1102:119–166

    Article  CAS  Google Scholar 

  • Yamada A., Matsushima O. (1992). Comp. Biochem. Physiol. B 103:617–621

    Article  Google Scholar 

  • Yorifuji T., Ogata K. (1971). J. Biol. Chem. 246:5085–5092

    CAS  Google Scholar 

  • Zhou G., Somasundaram T., Blanc E., Parthasarathy G., Ellington W. R., Chapman M. S. (1998). Proc. Natl. Acad. Sci. U. S. A. 95:8449–8454

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. W. Ross Ellington of Florida State University for kindly reading this manuscript and giving us invaluable suggestions. We also thank Shuichi Ichinari for the supply of lombricine. This work was supported by grants from the Grants-In-Aid for Scientific Research of Japan to TS (17570062) and to KU (173622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiko Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uda, K., Suzuki, T. A Novel Arginine Kinase with Substrate Specificity Towards d-arginine. Protein J 26, 281–291 (2007). https://doi.org/10.1007/s10930-007-9070-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-007-9070-7

Keywords

Navigation