Skip to main content
Log in

Conjugation of Multiple Copies of Polyethylene Glycol to Hemoglobin Facilitated Through Thiolation: Influence on Hemoglobin Structure and Function

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

PEGylation induced changes in molecular volume and solution properties of HbA have been implicated as potential modulators of its vasoconstrictive activity. However, our recent studies with PEGylated Hbs carrying two PEG chains/Hb, have demonstrated that the modulation of the vasoconstrictive activity of Hb is not a direct correlate of the molecular volume and solution properties of the PEGylated Hb and implicated a role for the surface charge and/or the pattern of surface decoration of Hb with PEG. HbA has now been modified by thiolation mediated maleimide chemistry based PEGylation that does not alter its surface charge and conjugates multiple copies of PEG5K chains. This protocol has been optimized to generate a PEGylated Hb, (SP-PEG5K)6-Hb, that carries ~six PEG5K chains/Hb – HexaPEGylated Hb. PEGylation increased the O2 affinity of Hb and desensitized the molecule for the influence of ionic strength, pH, and allosteric effectors, presumably a consequence of the hydrated PEG-shell generated around the protein. The total PEG mass in (SP-PEG5K)6-Hb, its molecular volume, O2 affinity and solution properties are similar to that of another PEGylated Hb, (SP-PEG20K)2-Hb, that carries two PEG20K chains/Hb. However, (SP-PEG5K)6-Hb exhibited significantly reduced vasoconstriction mediated response than (SP-PEG20K)2-Hb. These results demonstrate that the enhanced molecular size and solution properties achieved through the conjugation of multiple copies of small PEG chains to Hb is more effective in decreasing its vasoconstrictive activity than that achieved through the conjugation of a comparable PEG mass using a small number of large PEG chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Hb:

hemoglobin

PEG:

poly(ethylene glycol)

PEGylation:

conjugation with PEG

PEGylated:

conjugated with PEG

4-PDS:

4,4-dithiopyridine

SP:

succinimidophenyl

SE:

succinimidoethyl

PBS:

phosphate buffered saline

Tris:

tris(hydroxymethyl) amino methane

SEC:

size exclusion chromatography

COP:

colloidal osmotic pressure

FCD:

functional capillary density

MAP:

mean arterial pressure

hypervolemic infusion:

infusion of a known volume of the test solution without removal of an equal volume of blood

References

  • Acharya, A. S., Manjula, B. N., and Smith, P. K. (1996). US Patent 5,585,484.

  • R. S. Ampulski V. E. Ayers S. A. Morell (1969) Anal. Biochem 32 163–169 Occurrence Handle10.1016/0003-2697(69)90118-3 Occurrence Handle5407964

    Article  PubMed  Google Scholar 

  • P. Bailon W. Berthold (1998) Pharm. Sci. Technol. Today. 1 352–356 Occurrence Handle10.1016/S1461-5347(98)00086-8

    Article  Google Scholar 

  • P. Bailon A. Palleroni C. A. Schaffer C. L. Spence W.-J. Fung J. E. Porter G. K. Ehrlich W. Pan Z.-X. Xu M. W. Modi A. Farid W. Berthold (2001) Bioconj. Chem. 12 195–202 Occurrence Handle10.1021/bc000082g

    Article  Google Scholar 

  • S. M Chamow T. P. Kogan M. Venuti T. Gadek R. J. Harris D. H. Peers J. Mordenti S. Shak A. Ashkenazi (1994) Bioconj. Chem. 5 133–140 Occurrence Handle10.1021/bc00026a005

    Article  Google Scholar 

  • y. Cheng T.-J. Shen V. Simplaceanu C. Ho (2002) Biochemistry 41 11901–11913 Occurrence Handle10.1021/bi0202880 Occurrence Handle12269835

    Article  PubMed  Google Scholar 

  • D. H. Doherty M. P. Doyle S. R. Curry (1998) Nature Biotechnol. 16 672–676 Occurrence Handle10.1038/nbt0798-672

    Article  Google Scholar 

  • Y. Dou D. H. Maillett R. F. Eich J. S. Olson (2002) Biophys. Chem. 98 127–148 Occurrence Handle10.1016/S0301-4622(02)00090-X Occurrence Handle12128195

    Article  PubMed  Google Scholar 

  • R. F. Eich T. Li D. D. Lemon D. H. Doherty S. R. Curry J. F. Aitken A. J. Mathews K. A. Johnson R. D. Smith G. N. Phillips SuffixJr. J. S. Olson D. D. Lemon (1996) Biochemistry 35 6976–6983 Occurrence Handle10.1021/bi960442g Occurrence Handle8679521

    Article  PubMed  Google Scholar 

  • L. W. M. Fung C. Ho (1975) Biochemistry 14 2526–2535 Occurrence Handle10.1021/bi00682a036 Occurrence Handle1138870

    Article  PubMed  Google Scholar 

  • J. R. Hess V. W. Macdonald W. W. Brinkley (1993) J. Appl. Physiol. 74 1769–1778 Occurrence Handle8514695

    PubMed  Google Scholar 

  • C.-J. Jackson J. L. Charlton K. Kuzminski G. M. Lang A. H. Sehon (1987) Anal. Biochem. 165 114–127 Occurrence Handle10.1016/0003-2697(87)90208-9 Occurrence Handle3688426

    Article  PubMed  Google Scholar 

  • R. Jue J. M. Lambert L. R. Pierce R. R. Traut (1978) Biochemistry 17 5399–5406 Occurrence Handle10.1021/bi00618a013 Occurrence Handle365229

    Article  PubMed  Google Scholar 

  • L. J. Juszczak B. N. Manjula C. Bonaventura A. S. Acharya J. M. Friedman (2002) Biochemistry 41 376–385 Occurrence Handle10.1021/bi011212r Occurrence Handle11772037

    Article  PubMed  Google Scholar 

  • H. Kerger D. J. Saltzman M. D. Menger K. Messmer M. Intaglietta (1996) Am. J. Physiol. 270 H827–H836 Occurrence Handle8780176

    PubMed  Google Scholar 

  • I. Khan D. Dansker U. Samuni A. J. Friedman C. Bonaventura B. N. Manjula A. S. Acharya J. M. Friedman (2001) Biochemistry 40 7581–7592 Occurrence Handle11412112

    PubMed  Google Scholar 

  • R. Kilbourn J. Ghislaine B. Cashon J. DeAngelo J. Bonaventura (1994) Biochem. Biophys. Res. Commun. 199 155–162 Occurrence Handle10.1006/bbrc.1994.1208 Occurrence Handle7907213

    Article  PubMed  Google Scholar 

  • L. S. Lee C. Conover C. Shi M. Whitlow D. Filpula (1999) Bioconj. Chem. 10 973–981 Occurrence Handle10.1021/bc990076o

    Article  Google Scholar 

  • V. W. Macdonald R. Motterlini (1994) Artif. Cells Blood Substitutes and Immobilization Biotechnol. 22 565–575

    Google Scholar 

  • B. N. Manjula A. Malavalli P. K. Smith N.-L. Chan A. Arnone J. M. Friedman A. S. Acharya (2000) J. Biol. Chem. 275 5527–5534 Occurrence Handle10.1074/jbc.275.8.5527 Occurrence Handle10681532

    Article  PubMed  Google Scholar 

  • Manjula, B. N. and Acharya, A. S. (2003). In: Nagel, R. L. (ed.), Methods in Molecular Medicine: Hemoglobin Disorders: Molecular Methods and Protocols. vol. 82, Humana Press, Totowa, NJ, pp. 31–47.

  • B. N. Manjula A. Tsai R. Upadhya K. Perumalsamy P. K. Smith A. Malavalli K. D. Vandegriff R. M. Winslow M. Intaglietta M. Prabhakaran J. M. Friedman A. S. Acharya (2003) Bioconj. Chem. 14 464–472 Occurrence Handle10.1021/bc0200733

    Article  Google Scholar 

  • M. J. McCall H. Diril C. F. Meares (1990) Bioconj. Chem. 1 222–226 Occurrence Handle10.1021/bc00003a007

    Article  Google Scholar 

  • S. Mirhashemi G. A. Breit R. H. Chavez M. Intaglietta (1988) Am. J. Physiol. (Heart Circ. Physiol. 23) 254 H411–H416

    Google Scholar 

  • R. Motterlini K. D. Vandegriff R. M. Winslow (1996) Transfusion Med. Rev. 10 77–84

    Google Scholar 

  • S. M. Muldoon M. A. Ledvina J. L. Hart V. W. Macdonald (1996) J. Lab. Clin. Med. 128 579–584 Occurrence Handle10.1016/S0022-2143(96)90130-4 Occurrence Handle8960641

    Article  PubMed  Google Scholar 

  • K. Nho R. Linberg M. Johnson C. Gilbert R. Shorr (1994) Artif. Cells, Blood Substitutes and, Immobilization Biotechnol. 22 795–803

    Google Scholar 

  • P. Plateau M. Gueron (1982) J. Am. Chem. Soc. 104 7310–7311 Occurrence Handle10.1021/ja00389a067

    Article  Google Scholar 

  • M. J. Rao K. Schneider B. C. Chait T. L. Chao H. L. Keller S. M. Anderson B. N. Manjula R. A. Kumar A. S. Acharya (1994) Artif. Cells, Blood Substitutes and Immobilization Biotechnol. 22 695–700

    Google Scholar 

  • R. J. Rohlfs E. Bruner A. Chiu A. Gonzales M. L. Gonzales M. D. Magde K. D. Vandegriff R. M. Winslow (1998) J. Biol. Chem. 273 12128–12134 Occurrence Handle10.1074/jbc.273.20.12128 Occurrence Handle9575158

    Article  PubMed  Google Scholar 

  • R. Satake-Ishikawa M. Ishikawa Y. Okada M. Kakitani M. Kawagishi S. Matsuki K. Asano (1992) Cell Struc. Funct. 17 157–160

    Google Scholar 

  • R. Saxena A. D. Wijnhoud H. Carton (1999) Stroke 30 993–996 Occurrence Handle10229733

    PubMed  Google Scholar 

  • R. G. L. Shorr S. Kwong C. Gilbert R. E. Benesch (1999) Artificial Cells, Blood Substitutes and Immobilization Biotechnology 27 185–202

    Google Scholar 

  • R. Singh L. Kats W. A. Blattler J. M. Lambert (1996) Anal.Biochem 236 114–125 Occurrence Handle10.1006/abio.1996.0139 Occurrence Handle8619475

    Article  PubMed  Google Scholar 

  • E. P. Sloan M. Koenigsberg D. Gens (1999) J. Amer. Med. Assoc. 282 1857–1864 Occurrence Handle10.1001/jama.282.19.1857

    Article  Google Scholar 

  • A. Thomson A. E. McGarry C. R. Valeri W. Lieberthal (1994) J. Appl. Physiol. 77 2348–2354 Occurrence Handle7868454

    PubMed  Google Scholar 

  • R. R. Traut A. Bollen T. T. Sun J. W. B. Hershey J. Sundberg L. R. Pierce (1973) Biochemistry 12 3266–3273 Occurrence Handle10.1021/bi00741a019 Occurrence Handle4581787

    Article  PubMed  Google Scholar 

  • A. G. Tsai B. Friesenecker M. Intaglietta (1995) Int. J. Microcirc. Clin. Exp. 15 238–243 Occurrence Handle8852621

    PubMed  Google Scholar 

  • Tsai, A., Kerger, H., and Intaglietta, M. (1996). In: Winslow, R.M., Vandegriff, K.D., and Intaglietta, M. (eds), Blood Substitutes. New Challenges. Birkhauser, Boston, pp. 124–131.

  • A. G. Tsai B. Friesenecker M. McCarthy H. Sakai M. Intaglietta (1998) Am. J. Physiol. 275 H2170–H2180 Occurrence Handle9843817

    PubMed  Google Scholar 

  • K. D. Vandegriff M. McCarthy R. J. Rohlfs R. M. Winslow (1997) Biophys. Chem. 69 23–30 Occurrence Handle10.1016/S0301-4622(97)00079-3 Occurrence Handle9440206

    Article  PubMed  Google Scholar 

  • K. D. Vandegriff A. Malavalli J. Wooldridge J. Lohman R. M. Winslow (2003) Transfusion 43 509–516 Occurrence Handle10.1046/j.1537-2995.2003.00341.x Occurrence Handle12662285

    Article  PubMed  Google Scholar 

  • R. M. Winslow A. Gonzales M. L. Gonzales M. D. Magde M. McCarthy R. J. Rohlfs K. D. Vandegriff (1998) J. Physiol. 85 993–1003

    Google Scholar 

  • R. M. Winslow (1999) Ann. Rev. Med. 50 337–353 Occurrence Handle10.1146/annurev.med.50.1.337 Occurrence Handle10073282

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seetharama A. Acharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manjula, B.N., Tsai, A.G., Intaglietta, M. et al. Conjugation of Multiple Copies of Polyethylene Glycol to Hemoglobin Facilitated Through Thiolation: Influence on Hemoglobin Structure and Function. Protein J 24, 133–146 (2005). https://doi.org/10.1007/s10930-005-7837-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-005-7837-2

Keywords

Navigation