Skip to main content

Advertisement

Log in

In vitro, in vivo and in silico models of drug distribution into the brain

  • Review Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Achieving sufficient brain penetration to elicit efficacy in humans is one of the most challenging tasks for scientists in CNS Drug Discovery. Substantial progress has been made in the past decade in understanding the factors influencing the rate and extent of brain distribution via a variety of in vivo, in vitro and in silico methodologies, and hence, predict their likelihood of success in man. This purpose of this review is to summarize the current approaches with a special focus on parameters related to free drug concentrations in brain which are the most pharmacologically relevant for the majority of CNS disease targets. Due to the dynamic and complex nature of this targeted organ, it is inevitable that these approaches have not been able to provide a fully comprehensive assessment of brain distribution and are expected to evolve further in the years to come.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185

    Article  PubMed  CAS  Google Scholar 

  2. Shawahna R, Uchida Y, Declèves X, Ohtsuki S, Yousif S, Dauchy S, Jacob A, Chassoux F, Daumas-Duport C, Couraud PO, Terasaki T, Scherrmann JM (2011) Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm 8(4):1332–1341

    Article  PubMed  CAS  Google Scholar 

  3. Pangalos MN, Schechter LE, Hurko O (2007) Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat Rev Drug Discov 6(7):521–532

    Article  PubMed  CAS  Google Scholar 

  4. Morgan P, Van Der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS, Wegner CD, Street SD (2012) Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving phase II survival. Drug Discov Today 17(9–10):419–424

    Article  PubMed  CAS  Google Scholar 

  5. Smith QR (2003) A review of blood-brain barrier transport techniques. Methods Mol Med 89:193–208

    PubMed  CAS  Google Scholar 

  6. Dagenais C, Adveef A, Tsinman O, Dudley A, Beliveau R (2009) P-glycoprotein deficient mouse in situ blood-brain barrier permeability and its prediction using an in combo PAMPA model. Eur J Pharma Sci 38(2):121–137

    Article  CAS  Google Scholar 

  7. Boström E, Hammarlund-Udenaes M, Simonsson US (2008) Blood-brain barrier transport helps to explain discrepancies in in vivo potency between oxycodone and morphine. Anesthesiology 108(3):495–505

    Article  PubMed  Google Scholar 

  8. Kalvass JC, Maurer TS (2002) Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos 23(8):327–338

    Article  PubMed  CAS  Google Scholar 

  9. Summerfield SG, Stevens AJ, Cutler L, del Osuna Carmen M, Hammond B, Tang SP, Hersey A, Spalding DJ, Jeffrey P (2006) Improving the in vitro prediction of in vivo central nervous system penetration: integrating permeability, P-glycoprotein efflux, and free fractions in blood and brain. J Pharmacol Exp Ther 316(3):1282–1290

    Article  PubMed  CAS  Google Scholar 

  10. Fridén M, Gupta A, Antonsson M, Bredberg U, Hammarlund-Udenaes M (2007) In vitro methods for estimating unbound drug concentrations in the brain interstitial and intracellular fluids. Drug Metab Dispos 35(9):1711–1719

    Article  PubMed  Google Scholar 

  11. Fridén M, Ducrozet F, Middleton B, Antonsson M, Bredberg U, Hammarlund-Udenaes M (2009) Development of a high-throughput brain slice method for studying drug distribution in the central nervous system. Drug Metab Dispos 37(6):1226–1233

    Article  PubMed  Google Scholar 

  12. Liu X, Smith BJ, Chen C, Callegari E, Becker SL, Chen X, Cianfrogna J, Doran AC, Doran SD, Gibbs JP, Hosea N, Liu J, Nelson FR, Szewc MA, Van Deusen J (2006) Evaluation of cerebrospinal fluid concentration and plasma free concentration as a surrogate measurement for brain free concentration. Drug Metab Dispos 34(9):1443–1447

    Article  PubMed  CAS  Google Scholar 

  13. de Lange EC, Ravenstijn PG, Groenendaal D, van Steeg TJ (2005) Toward the prediction of CNS drug-effect profiles in physiological and pathological conditions using microdialysis and mechanism-based pharmacokinetic-pharmacodynamic modeling. AAPS J 7(3):E532–E543

    Article  PubMed  Google Scholar 

  14. Tunblad K, Hammarlund-Udenaes M, Jonsson EN (2005) Influence of probenecid on the delivery of morphine-6-glucuronide to the brain. Eur J Pharm Sci 24(1):49–57

    Article  PubMed  CAS  Google Scholar 

  15. Wang Q, Rager JD, Weinstein K, Kardos PS, Dobson GL, Li J, Hidalgo IJ (2005) Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier. Int J Pharm 288(2):349–359

    Article  PubMed  CAS  Google Scholar 

  16. Di L, Kerns EH, Bezar IF, Petusky SL, Huang Y (2009) Comparison of blood-brain barrier permeability assays: in situ brain perfusion, MDR1-MDCKII and PAMPA-BBB. J Pharm Sci 98(6):1980–1991

    Article  PubMed  CAS  Google Scholar 

  17. Grumetto L, Carpentiero C, Barbato F (2012) Lipophilic and electrostatic forces encoded in IAM-HPLC indexes of basic drugs: their role in membrane partition and their relationships with BBB passage data. Eur J Pharm Sci 45(5):685–692

    Article  PubMed  CAS  Google Scholar 

  18. Virdee K, Cumming P, Caprioli D, Jupp B, Rominger A, Aigbirhio FI, Fryer TD, Riss PJ, Dalley JW (2012) Applications of positron emission tomography in animal models of neurological and neuropsychiatric disorders. Neurosci Biobehav Rev 36(4):1188–1216

    Article  PubMed  Google Scholar 

  19. Matthews PM, Rabiner EA, Passchier J, Gunn RN (2012) Positron emission tomography molecular imaging for drug development. Br J Clin Pharmacol 73(2):175–186

    Article  PubMed  CAS  Google Scholar 

  20. Wotjak CT, Landgraf R, Engelmann M (2008) Listening to neuropeptides by microdialysis: echoes and new sounds? Pharmacol Biochem Behav 90(2):125–134

    Article  PubMed  CAS  Google Scholar 

  21. Westerhout J, Ploeger B, Smeets J, Danhof M, de Lange EC (2012) Physiologically based pharmacokinetic modeling to investigate regional brain distribution kinetics in rats. AAPS J 14(3):543–553

    Article  PubMed  CAS  Google Scholar 

  22. Westerhout J, Danhof M, De Lange EC (2011) Preclinical prediction of human brain target site concentrations: considerations in extrapolating to the clinical setting. J Pharm Sci 100(9):3577–3593

    Article  PubMed  CAS  Google Scholar 

  23. Cremers TI, Flik G, Hofland C, Stratford RE Jr (2012) Microdialysis evaluation of clozapine and N-desmethylclozapine pharmacokinetics in rat brain. Drug Metab Dispos 40(10):1909–1916

    Article  PubMed  CAS  Google Scholar 

  24. Bengtsson J, Ederoth P, Ley D, Hansson S, Amer-Wåhlin I, Hellström-Westas L, Marsál K, Nordström CH, Hammarlund-Udenaes M (2009) The influence of age on the distribution of morphine and morphine-3-glucuronide across the blood-brain barrier in sheep. Br J Pharmacol 157(6):1085–1096

    Article  PubMed  CAS  Google Scholar 

  25. Gupta A, Chatelain P, Massingham R, Jonsson EN, Hammarlund-Udenaes M (2006) Brain distribution of cetirizine enantiomers: comparison of three different tissue-to-plasma partition coefficients: K(p), K(p, u), and K(p, uu). Drug Metab Dispos 34(2):318–323

    Article  PubMed  CAS  Google Scholar 

  26. Bengtsson J, Boström E, Hammarlund-Udenaes M (2008) The use of a deuterated calibrator for in vivo recovery estimations in microdialysis studies. J Pharm Sci 97(8):3433–3441

    Article  PubMed  CAS  Google Scholar 

  27. Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A (2008) On the rate and extent of drug delivery to the brain. Pharm Res 25(8):1737–1750

    Article  PubMed  CAS  Google Scholar 

  28. de Lange EC, Danhof M (2002) Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet 41(10):691–703

    Article  PubMed  Google Scholar 

  29. Kodaira H, Kusuhara H, Fujita T, Ushiki J, Fuse E, Sugiyama Y (2011) Quantitative evaluation of the impact of active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a surrogate. J Pharmacol Exp Ther 339(3):935–944

    Article  PubMed  CAS  Google Scholar 

  30. Fridén M, Winiwarter S, Jerndal G, Bengtsson O, Wan H, Bredberg U, Hammarlund-Udenaes M, Antonsson M (2009) Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J Med Chem 52(20):6233–6243

    Article  PubMed  Google Scholar 

  31. Doran A, Obach RS, Smith BJ, Hosea NA, Becker S, Callegari E, Chen C, Chen X, Choo E, Cianfrogna J, Cox LM, Gibbs JP, Gibbs MA, Hatch H, Hop CE, Kasman IN, Laperle J, Liu J, Liu X, Logman M, Maclin D, Nedza FM, Nelson F, Olson E, Rahematpura S, Raunig D, Rogers S, Schmidt K, Spracklin DK, Szewc M, Troutman M, Tseng E, Tu M, Van Deusen JW, Venkatakrishnan K, Walens G, Wang EQ, Wong D, Yasgar AS, Zhang C (2005) The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos 33(1):165–174

    Article  PubMed  CAS  Google Scholar 

  32. Oostendorp RL, Buckle T, Beijnen JH, van Tellingen O, Schellens JH (2009) The effect of P-gp (Mdr1a/1b), BCRP (Bcrp1) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib. Invest New Drugs 27(1):31–40

    Article  PubMed  CAS  Google Scholar 

  33. Kallem R, Kulkarni CP, Patel D, Thakur M, Sinz M, Singh SP, Mahammad SS, Mandlekar S (2012) A simplified protocol employing elacridar in rodents: A screening model in drug discovery to assess P-gp mediated efflux at blood brain barrier. Drug Metab Lett 16(2):134–144

    Article  Google Scholar 

  34. Cutler L, Howes C, Deeks NJ, Buck TL, Jeffrey P (2006) Development of a P-glycoprotein knockout model in rodents to define species differences in its functional effect at the blood-brain barrier. J Pharm Sci 95(9):1944–1953

    Article  PubMed  CAS  Google Scholar 

  35. Paproski RJ, Wuest M, Jans HS, Graham K, Gati WP, McQuarrie S, McEwan A, Mercer J, Young JD, Cass CE (2010) Biodistribution and uptake of 3’-deoxy-3’-fluorothymidine in ENT1-knockout mice and in an ENT1-knockdown tumor model. J Nucl Med 51(9):1447–1455

    Article  PubMed  CAS  Google Scholar 

  36. Ose A, Kusuhara H, Endo C, Tohyama K, Miyajima M, Kitamura S, Sugiyama Y (2010) Functional characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs across the blood-brain barrier. Drug Metab Dispos 38(1):168–176

    Article  PubMed  CAS  Google Scholar 

  37. Smith DE, Hu Y, Shen H, Nagaraja TN, Fenstermacher JD, Keep RF (2011) Distribution of glycylsarcosine and cefadroxil among cerebrospinal fluid, choroid plexus, and brain parenchyma after intracerebroventricular injection is markedly different between wild-type and Pept2 null mice. J Cereb Blood Flow Metab 31(1):250–261

    Article  PubMed  CAS  Google Scholar 

  38. Miyajima M, Kusuhara H, Fujishima M, Adachi Y, Sugiyama Y (2011) Organic anion transporter 3 mediates the efflux transport of an amphipathic organic anion, dehydroepiandrosterone sulfate, across the blood-brain barrier in mice. Drug Metab Dispos 39(5):814–819

    Article  PubMed  CAS  Google Scholar 

  39. André P, Debray M, Scherrmann JM, Cisternino S (2009) Clonidine transport at the mouse blood-brain barrier by a new H+ antiporter that interacts with addictive drugs. J Cereb Blood Flow Metab 29(7):1293–1304

    Article  PubMed  Google Scholar 

  40. Ose A, Ito M, Kusuhara H, Yamatsugu K, Kanai M, Shibasaki M, Hosokawa M, Schuetz JD, Sugiyama Y (2009) Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64–0802), a pharmacologically active form of oseltamivir, by active efflux across the blood-brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4). Drug Metab Dispos 37(2):315–321

    Article  PubMed  CAS  Google Scholar 

  41. Pan W, Kastin AJ (2002) TNFalpha transport across the blood-brain barrier is abolished in receptor knockout mice. Exp Neurol 174(2):193–200

    Article  PubMed  CAS  Google Scholar 

  42. Tournier N, Cisternino S, Peyronneau MA, Goutal S, Dolle F, Scherrmann JM, Bottlaender M, Saba W, Valette H (2012) Discrepancies in the P-glycoprotein-mediated transport of (18)F-MPPF: a pharmacokinetic study in mice and non-human primates. Pharm Res 29(9):2468–2476

    Article  PubMed  CAS  Google Scholar 

  43. Zoghbi SS, Liow JS, Yasuno F, Hong J, Tuan E, Lazarova N, Gladding RL, Pike VW, Innis RB (2008) 11C-loperamide and its N-desmethyl radiometabolite are avid substrates for brain permeability-glycoprotein efflux. J Nucl Med 49(4):649–656

    Article  PubMed  CAS  Google Scholar 

  44. Roulet A, Puel O, Gesta S, Lepage JF, Drag M, Soll M, Alvinerie M, Pineau T (2003) MDR1-deficient genotype in Collie dogs hypersensitive to the P-glycoprotein substrate ivermectin. Eur J Pharmacol 24 460(2-3):85–91

    Article  CAS  Google Scholar 

  45. Gunn RN, Summerfield SG, Salinas CA, Read KD, Guo Q, Searle GE, Parker CA, Jeffrey P, Laruelle M (2012) Combining PET biodistribution and equilibrium dialysis assays to assess the free brain concentration and BBB transport of CNS drugs. J Cereb Blood Flow Metab 32(5):874–883

    Article  PubMed  CAS  Google Scholar 

  46. Murakami H, Takanaga H, Matsuo H, Ohtani H, Sawada Y (2000) Comparison of blood-brain barrier permeability in mice and rats using in situ brain perfusion technique. Am J Physiol Heart Circ Physiol 279(3):H1022–H1028

    PubMed  CAS  Google Scholar 

  47. Summerfield SG, Read K, Begley DJ, Obradovic T, Hidalgo IJ, Coggon S, Lewis AV, Porter RA, Jeffrey P (2007) Central nervous system drug disposition: the relationship between in situ brain permeability and brain free fraction. J Pharmacol Exp Ther 322(1):205-13. Erratum in: J Pharmacol Exp Ther 330(3):971-2

    Google Scholar 

  48. Liu X, Smith BJ, Chen C, Callegari E, Becker SL, Chen X, Cianfrogna J, Doran AC, Doran SD, Gibbs JP, Hosea N, Liu J, Nelson FR, Szewc MA, Van Deusen J (2005) Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther 313(3):1254–1262

    Article  PubMed  CAS  Google Scholar 

  49. Liu X, Chen C (2005) Strategies to optimize brain penetration in drug discovery. Curr Opin Drug Discov Devel 8(4):505–512

    PubMed  CAS  Google Scholar 

  50. Hammarlund-Udenaes M, Paalzow LK, de Lange EC (1997) Drug equilibration across the blood-brain barrier—pharmacokinetic considerations based on the microdialysis method. Pharm Res (NY) 14:128–134

    Article  CAS  Google Scholar 

  51. Svendsen CN, Hrbek CC, Casendino M, Nichols RD, Bird ED (1988) Concentration and distribution of thioridazine and metabolites in schizophrenic post-mortem brain tissue. Psychiatry Res 23(1):1–10

    Article  PubMed  CAS  Google Scholar 

  52. Summerfield SG, Lucas AJ, Porter RA, Jeffrey P, Gunn RN, Read KR, Stevens AJ, Metcalf AC, Osuna MC, Kilford PJ, Passchier J, Ruffo AD (2008) Toward an improved prediction of human in vivo brain penetration. Xenobiotica 38(12):1518–1535

    Article  PubMed  CAS  Google Scholar 

  53. Kell DB, Dobson PD, Oliver SG (2011) Pharmaceutical drug transport: the issues and the implications that it is essentially carrier-mediated only. Drug Discov Today 16(15–16):704–714

    Article  PubMed  CAS  Google Scholar 

  54. Di L, Artursson P, Avdeef A, Ecker GF, Faller B, Fischer H, Houston JB, Kansy M, Kerns EH, Krämer SD, Lennernäs H, Sugano K (2012) Evidence-based approach to assess passive diffusion and carrier-mediated drug transport. Drug Discov Today 17(15–16):905–912

    Article  PubMed  CAS  Google Scholar 

  55. Dagenais C, Avdeef A, Tsinman O, Dudley A, Beliveau R (2009) P-glycoprotein deficient mouse in situ blood-brain barrier permeability and its prediction using an in combo PAMPA model. Eur J Pharm Sci 38(2):121–137

    Article  PubMed  CAS  Google Scholar 

  56. Hakkaarainen J, Jalkanen AJ, Kääriäinen TM, Keski-Rahkonen P, Venäläinen T, Hokkanen J, Mönkkönen J, Suhonen M, Forsberg M (2010) Comparison of in vitro cell models in predicting in vivo brain entry of drugs. Int J Pharm 402:27–36

    Article  Google Scholar 

  57. Mabondzo A, Bottlaender M, Guyot A-C, Tsaouin K, Deverre JR, Balimane P (2010) Validation of in vitro cell-based human blood-brain barrier model using clinical positron emission tomography radiolligands to predict in vivo human brain penetration. Mol Pharm 7(5):1805–1815

    Article  PubMed  CAS  Google Scholar 

  58. Lundquist S, Renftel M, Brillault J, Fenart L, Cecchelli R, Dehouck MP (2002) Prediction of drug transport through the blood-brain barrier in vivo: a comparison between two in vitro cell models. Pharm Res 19:976–981

    Article  PubMed  CAS  Google Scholar 

  59. Feng B, Mills JB, Davidson RE, Mireles RJ, Janiszewski JS, Troutman MD, de Morais SM (2008) In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab Dispos 36(2):268–275

    Article  PubMed  CAS  Google Scholar 

  60. Nicolazzo JA, Katneni K (2009) Drug transport across the blood-brain barrier and the impact of breast cancer resistance protein (ABCG2). Curr Top Med Chem 9(2):130–147

    Article  PubMed  CAS  Google Scholar 

  61. Begley DJ (2004) ABC transporters and the blood-brain barrier. Curr Pharm Des 10(12):1295–1312

    Article  PubMed  CAS  Google Scholar 

  62. Perrière N, Yousif S, Cazaubon S, Chaverot N, Bourasset F, Cisternino S, Declèves X, Hori S, Terasaki T, Deli M, Scherrmann JM, Temsamani J, Roux F, Couraud PO (2007) A functional in vitro model of rat blood-brain barrier for molecular analysis of efflux transporters. Brain Res 1150:1–13

    Article  PubMed  Google Scholar 

  63. Nicolazzo JA, Katneni K (2009) Drug transport across the blood-brain barrier and impact of breast cancer resistance protein (ABCG2). Curr Topics Med Chem 9:130–147

    Article  CAS  Google Scholar 

  64. Agarwal S, Sane R, Ohlfest JR, Elmquist WF (2011) The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J Pharmacol Exp Ther 336:223–233

    Article  PubMed  CAS  Google Scholar 

  65. Poller B, Wagenaar E, Tang SC, Schinkel AH (2011) Double-transduced MDCKII cells to study human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) interplay in drug transport across the blood-brain barrier. Mol Pharm 8(2):571–582

    Article  PubMed  CAS  Google Scholar 

  66. van Bree JB, Audus KL, Borchardt RT (1988) Carrier-mediated transport of baclofen across monolayers of bovine endothelial cells in primary culture. Pharm Res 5(6):369–371

    Article  PubMed  Google Scholar 

  67. Joó F (1992) The cerebral microvessels in culture, an update. J Neurochem 58(1):1–17

    Article  PubMed  Google Scholar 

  68. Huwyler J, Fricker G, Török M, Schneider M, Drewe J (1997) Transport of clonidine across cultured brain microvessel endothelial cells. J Pharmacol Exp Ther 282(1):81–85

    PubMed  CAS  Google Scholar 

  69. Abbott NJ, Hughes CC, Revest PA, Greenwood J (1992) Development and characterisation of a rat brain capillary endothelial culture: towards an in vitro blood-brain barrier. J Cell Sci 103:23–37

    PubMed  CAS  Google Scholar 

  70. Coisne C, Dehouck L, Faveeuw C, Delplace Y, Miller F, Landry C, Morissette C, Fenart L, Cecchelli R, Tremblay P, Dehouck B (2005) Mouse syngenic in vitro blood-brain barrier model: a new tool to examine inflammatory events in cerebral endothelium. Lab Invest 85(6):734–746

    Article  PubMed  CAS  Google Scholar 

  71. Cucullo L, Hossain M, Rapp E, Manders T, Marchi N, Janigro D (2007) Development of a humanized in vitro blood-brain barrier model of screen for brain penetration of antiepileptic drugs. Epilepsia 48(3):505–516

    Article  PubMed  CAS  Google Scholar 

  72. Lacombe O, Videau O, Chevillon D, Guyot AC, Contreras C, Blondel S, Nicolas L, Ghettas A, Bénech H, Thevenot E, Pruvost A, Bolze S, Krzaczkowski L, Prévost C, Mabondzo A (2011) In vitro primary human and animal cell-based blood-brain barrier models as a screening tool in drug discovery. Mol Pharm 8:651–663

    Article  PubMed  CAS  Google Scholar 

  73. Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263

    Article  PubMed  CAS  Google Scholar 

  74. Smith DA, Di L, Kerns EH (2010) The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov 9(12):929–939

    Article  PubMed  CAS  Google Scholar 

  75. Hammarlund-Udenaes M (2010) Active-site concentrations of chemicals—are they a better predictor of effect than plasma/organ/tissue concentrations? Basic Clin Pharmacol Toxicol 106(3):215–220

    Article  PubMed  CAS  Google Scholar 

  76. Fridén M, Bergström F, Wan H, Rehngren M, Ahlin G, Hammarlund-Udenaes M, Bredberg U (2011) Measurement of unbound drug exposure in brain: modelling of pH partitioning explains diverging results between the brain slice and brain homogenate methods. Drug Metab Dispos 39(3):353–362

    Article  PubMed  Google Scholar 

  77. Watson J, Wright S, Lucas A, Clarke KL, Viggers J, Cheetham S, Jeffrey P, Porter R, Read KD (2009) Receptor occupancy and brain free fraction. Drug Metab Dispos 37(4):753–760

    Article  PubMed  CAS  Google Scholar 

  78. Liu X, Tu M, Kelly RS, Chen C, Smith BJ (2004) Development of a computational approach to predict blood-brain barrier permeability. Drug Metab Dispos 32(1):132–139

    Article  PubMed  CAS  Google Scholar 

  79. Suenderhauf C, Hammann F, Huwyler J (2012) Computational prediction of blood-brain barrier permeability using decision tree induction. Molecules 17(9):10429–10445

    Article  PubMed  CAS  Google Scholar 

  80. Muehlbacher M, Spitzer GM, Liedl KR, Kornhuber J (2011) Qualitative prediction of blood-brain barrier permeability on a large and refined dataset. J Comput Aided Mol Des 25(12):1095–1106

    Article  PubMed  CAS  Google Scholar 

  81. Fan Y, Unwalla R, Denny RA, Di L, Kerns EH, Diller DJ, Humblet C (2010) Insights for predicting blood-brain barrier penetration of CNS targeted molecules using QSPR approaches. J Chem Inf Model 50(6):1123–1133

    Article  PubMed  CAS  Google Scholar 

  82. Wan H, Rehngren M, Giordanetto F, Bergström F, Tunek A (2007) High-throughput screening of drug-brain tissue binding and in silico prediction for assessment of central nervous system drug delivery. J Med Chem 50(19):4606–4615

    Article  PubMed  CAS  Google Scholar 

  83. Chen H, Winiwarter S, Fridén M, Antonsson M, Engkvist O (2011) In silico prediction of unbound brain-to-plasma concentration ratio using machine learning algorithms. J Mol Graph Model 29(8):985–995

    Article  PubMed  CAS  Google Scholar 

  84. Chen L, Li Y, Yu H, Zhang L, Hou T (2012) Computational models for predicting substrates or inhibitors of P-glycoprotein. Drug Discov Today 17(7–8):343–351

    Article  PubMed  CAS  Google Scholar 

  85. Bikadi Z, Hazai I, Malik D, Jemnitz K, Veres Z, Hari P, Ni Z, Loo TW, Clarke DM, Hazai E, Mao Q (2011) Predicting P-glycoprotein-mediated drug transport based on support vector machine and three-dimensional crystal structure of P-glycoprotein. PLoS One 6(10):e25815

    Article  PubMed  CAS  Google Scholar 

  86. Snyder WS (1975) Report of the task force on reference man. Pergamon, Oxford

    Google Scholar 

  87. Avdeef A, Sun N (2011) A new in situ brain perfusion flow correction method for lipophilic drugs based on the pH-dependent Crone-Renkin equation. Pharm Res 28(3):517–530

    Article  PubMed  CAS  Google Scholar 

  88. del Amo EM, Urtti A, Yliperttula M (2008) Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci 35(3):161–174

    Article  PubMed  Google Scholar 

  89. Leong MK, Chen HB, Shih YH (2012) Prediction of promiscuous p-glycoprotein inhibition using a novel machine learning scheme. PLoS One 7(3):e33829

    Article  PubMed  CAS  Google Scholar 

  90. Ball K, Bouzom F, Scherrmann J-M, Walther B, Declèves X (2012) Development of a physiologically based pharmacokinetic model for the rat central nervous system and determination of an in vitro-in vivo scaling methodology for the blood-brain barrier permeability of two transporter substrates, morphine and oxycodone. J Pharm Sci 101:4277–4292

    Article  PubMed  CAS  Google Scholar 

  91. de Lange E, Ravenstijn P, Groenendaal D, van Steeg T (2005) Toward the prediction of CNS drug-effect profiles in physiological and pathological conditions using microdialysis and mechanism-based pharmacokinetic-pharmacodynamic modelling. The AAPS J 7(3):E532–E543

    Article  Google Scholar 

  92. International Transporter Consortium, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9(3):215–236

    Article  PubMed  CAS  Google Scholar 

  93. Jeffrey P, Summerfield SG (2007) Challenges for blood-brain barrier (BBB) screening. Xenobiotica 37(10–11):1135–1151

    Article  PubMed  CAS  Google Scholar 

  94. Naik P, Cucullo L (2012) In vitro blood-brain barrier models: current and perspective technologies. J Pharm Sci 101(4):1337–1354

    Article  PubMed  CAS  Google Scholar 

  95. Dagenais C, Graff CL, Pollack GM (2004) Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem Pharmacol 67(2):269–276

    Article  PubMed  CAS  Google Scholar 

  96. Dagenais C, Zong J, Ducharme J, Pollack GM (2001) Effect of mdr1a P-glycoprotein gene disruption, gender, and substrate concentration on brain uptake of selected compounds. Pharm Res 18(7):957–963

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Andy Ayrton for his valuable scientific input during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott G. Summerfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Summerfield, S.G., Dong, K.C. In vitro, in vivo and in silico models of drug distribution into the brain. J Pharmacokinet Pharmacodyn 40, 301–314 (2013). https://doi.org/10.1007/s10928-013-9303-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-013-9303-7

Keywords

Navigation