Skip to main content
Log in

Ethnic differences in the population pharmacokinetics and pharmacodynamics of warfarin

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Ethnic differences in warfarin maintenance doses have been documented amongst the three major Asian ethnic groups (Chinese, Malay and Indian) in Singapore. Studies have shown that cytochrome P450 2C9 (CYP2C9) polymorphisms alone did not entirely account for these differences. Recent reports suggest that VKORC1 (subunit of vitamin K epoxide reductase) haplotypes are more predictive of warfarin response. Population pharmacokinetic/pharmacodynamic (PK/PD) modelling techniques were employed to characterise the PK and PD of warfarin in a healthy volunteer study of 16 Chinese and Indian subjects following a single 25 mg dose of warfarin. To further investigate the underlying differences in warfarin response, a semi-mechanistic modelling approach (using an indirect response model for PCA activity) incorporating the vitamin K cycle was attempted using population methods with Bayesian inference. All eight Indian subjects had H7H7 VKORC1 haplotypes and three had either *2/wt or *3/wt CYP2C9 genotypes. Six Chinese subjects had H1H1 VKORC1 haplotypes and one had H1H7. All Chinese subjects were homozygous wt/wt for CYP2C9. Simulations to steady state were performed to examine warfarin response in subjects with different CYP2C9 and VKORC1 polymorphisms. The presence of a single *2 or *3 CYP2C9 allele reduced mean [SE (standard error)] S-warfarin clearance by 35% from 0.276 (0.04) to 0.180 (0.11) l/h. Subjects with VKORC1 haplotype groups of H7H7 had increased mean (SE) C 50,S (concentration of S-warfarin required to achieve 50% of maximum effect) of 479 (7.3) compared to 206 (6.7) ng/ml in subjects with the H1H1 groups. For subjects with the H1H7 haplotype, mean (SE) C 50,S increased 1.4 times to 288 (1.3) ng/ml compared to subjects with H1H1 haplotypes. Steady state simulations showed that whilst CYP2C9 polymorphisms affect the PK of warfarin, VKORC1 haplotypes may be better predictors of warfarin response. Since 90% of Chinese subjects had the VKORC1 H1 haplotype and 100% of Indian subjects the H7 haplotype in this study, ethnic differences in warfarin response in this study appear to be linked to differences in VKORC1 haplotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Majerus P, Tollefsen D (2006) Goodman and Gilman’s the pharmacological basis of therapeutics, 11th edn, Chap 54. McGraw-Hill, NY

  2. Lewis R, Trager W, Chan K, Breckenridge A, Orme M, Rowland M, Schary W (1974) Warfarin––stereochemical aspects of its metabolism and the interaction with phenylbutazone. J Clin Invest 53:1607–1617

    Article  CAS  PubMed  Google Scholar 

  3. Miners J, Birkett D (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 45:525–538

    Article  CAS  PubMed  Google Scholar 

  4. Linder M (2001) Genetic mechanisms for hypersensitivity and resistance to the anticoagulant warfarin. Clin Chim Acta 308:9–15

    Article  CAS  PubMed  Google Scholar 

  5. Zhao F, Loke C, Rankin S, Guo J, Lee H, Wu T, Tan T, Liu T, Lu W, Lim Y, Zhang Q, Goh B, Lee S (2004) Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose. Clin Pharmacol Ther 76(3):210–219

    Article  CAS  PubMed  Google Scholar 

  6. Herman D, Locatelli I, Grabnar I, Peternel P, Stegnar M, Mrhar A, Breskvar K, Dolzan V (2005) Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J 5:193–202

    Article  CAS  PubMed  Google Scholar 

  7. Freeman B, Zhenbauer B, McGrath S, Borecki I, Buchman T (2000) Cytochrome P450 polymorphisms are associated with reduced warfarin dose. Surgery 128:281–285

    Article  CAS  PubMed  Google Scholar 

  8. Kamali F, Khan T, King B, Frearson R, Kesteven P, Wood P, Daly A, Wynne H (2004) Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin. Clin Pharmacol Ther 75:204–212

    Article  CAS  PubMed  Google Scholar 

  9. Li T, Chang C, Jin D, Lin P, Khvorova A, Stafford D (2004) Identification of the gene for vitamin K epoxide reductase. Nature 427:541–544

    Article  CAS  PubMed  Google Scholar 

  10. Sconce E, Khan T, Wynne H, Avery P, Monkhouse L, King B, Wood P, Kesteven P, Daly A, Kamali F (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106:2329–2333

    Article  CAS  PubMed  Google Scholar 

  11. D’Andrea G, D’Ambrosio R, Di Perna P, Chetta M, Santacroce R, Brancaccio V, Grandone E, Margaglione M (2005) A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 105:645–649

    Article  PubMed  CAS  Google Scholar 

  12. Rieder M, Reiner A, Gage B, Nickerson D, Eby C, McLeod H, Blough D, Thummel K, Veenstra D, Rettie A (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin Dose. N Engl J Med 352:2285–2293

    Article  CAS  PubMed  Google Scholar 

  13. Lee S, Ng S, Oldenburg J, Chong P, Rost S, Guo J, Yap H, Rankin S, Khor H, Yeo T, Ng K, Soong R, Goh B (2006) Interethnic variability of warfarin maintenance requirement is explained by VKORC1 genotype in an Asian population. Clin Pharmacol Ther 79:197–205

    Article  CAS  PubMed  Google Scholar 

  14. DeLozier T, Lee S, Coulter S, Goh B, Goldstein J (2005) Functional characterization of novel allelic variants of CYP2C9 recently discovered in Southeast Asians. J Pharmacol Exp Ther 315(3):1085–1090

    Article  CAS  PubMed  Google Scholar 

  15. Lal S, Sandanaraj E, Jada S, Kong MC, Lee L, Goh B, Lee S, Chowbay B (2007) Influence of APOE genotypes and VKORC1 haplotypes on warfarin dose requirements in Asian patients. Br J Clin Pharmacol 65:260–264

    Article  PubMed  CAS  Google Scholar 

  16. Poller L, Taberner D (1982) Dosage and control of oral anticoagulants: an international collaborative survey. Brit J Haematol 51:479–485

    Article  CAS  Google Scholar 

  17. Geisen C, Watzka M, Sittinger K, Steffens M, Daugela L, Seifried E, Müller C, Wienker T, Oldenburg J (2005) VKORC1 haplotypes and their impact on the inter-individual and inter-ethnical variability of oral anticoagulation. Thromb Haemost 94:773–779

    PubMed  Google Scholar 

  18. Blann A, Hewitt J, Siddiqui F, Bareford D (1999) Racial background is a determinant of average warfarin dose required to maintain the INR between 2.0 and 3.0. Brit J Haematol 107:207–209

    Article  CAS  Google Scholar 

  19. Takahashi H, Wilkinson G, Nutescu E, Morita T, Ritchie M, Scordo M, Pengo V, Padrini R, Ieiri I, Otsubo K, Kashima T (2006) Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genom 16:101–110

    Article  CAS  Google Scholar 

  20. Soon D, Kothare P, Linnebjerg H, Park S, Yuen E, Mace K, Wise S (2006) Effect of Exenatide on the pharmacokinetics and pharmacodynamics of warfarin in healthy Asian Men. J Clin Pharmacol 46:1179–1187

    Article  CAS  PubMed  Google Scholar 

  21. Benet L, Hoener BA (2002) Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther 71(3):115–121

    Article  CAS  PubMed  Google Scholar 

  22. Pitsiu M, Parker E, Aarons L, Rowland M (1993) Population pharmacokinetics and pharmacodynamics of warfarin in healthy young adults. Eur J Pharm Sci 151–157

  23. Holford N (1986) Clinical pharmacokinetics and pharmacodynamics of warfarin––understanding the dose-effect relationship. Clin Pharmacokinet 11:483–504

    Article  CAS  PubMed  Google Scholar 

  24. Jiang X, Blair E, McLachlan A (2006) Investigation of the effects of herbal medicines on warfarin response in healthy subjects: a population pharmacokinetic-pharmacodynamic modeling approach. J Clin Pharmacol 46:1370–1378

    Article  CAS  PubMed  Google Scholar 

  25. Carlisle D, Blaschke T (1981) Vitamin K1, vitamin K1 epoxide and warfarin interrelationships in the dog. Biochem Pharmacol 30:2931–2936

    Article  CAS  PubMed  Google Scholar 

  26. Bechtold H, Trenk D, Meinertz T, Rowland M, Jähnchen E (1983) Cyclic interconversion of vitamin K1 and vitamin K1 2, 3-epoxide in man. Br J Clin Pharmacol 16:683–689

    CAS  PubMed  Google Scholar 

  27. Hallak H, Wedlund P (1992) Reversible metabolism of vitamin K-vitamin K epoxide: modeling considerations and limitations. J Pharmacokinet Biop 20:1–18

    Article  CAS  Google Scholar 

  28. Vermeer C (1990) γ-Carboxyglutamate-containing proteins and the vitamin K-dependent carboxylase. Biochem J 266:625–636

    CAS  PubMed  Google Scholar 

  29. Lunn D, Best N, Thomas A, Wakefield J, Spiegelhalter D (2002) Bayesian analysis of population PK/PD models: general concepts and software. J Pharmacokinet Pharmacodyn 29:271–307

    Article  CAS  PubMed  Google Scholar 

  30. Brown R, Delp M, Lindstedt S, Rhomberg L, Beliles R (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13:407–484

    CAS  PubMed  Google Scholar 

  31. Thijssen H, Drittij-Reijnders M (1993) Vitamin K metabolism and vitamin K1 status in human liver samples: a search for inter-individual differences in warfarin sensitivity. Brit J Haematol 84:681–685

    Article  CAS  Google Scholar 

  32. Yamanaka Y, Yamano M, Yasunaga K, Shike T, Uchida K (1990) Effect of warfarin on plasma and liver vitamin K levels and vitamin K epoxide reductase activity in relation to plasma clotting factor levels in rats. Thromb Res 57:205–214

    Article  CAS  PubMed  Google Scholar 

  33. Chan E, McLachlan A, O’Reilly R, Rowland M (1994) Stereochemical aspects of warfarin drug interactions: use of a combined pharmacokinetic-pharmacodynamic model. Clin Pharmacol Ther 56(3):286–294

    Article  CAS  PubMed  Google Scholar 

  34. Bodin L, Verstuyft C, Treguoet D, Robert A, Dubert L, Funck-Brentano C, Jaillon P, Beaune P, Laurent-Puig P, Becquemont L, Lorlot M (2005) Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood 106:135–140

    Article  CAS  PubMed  Google Scholar 

  35. Veenstra D, You J, Rieder M, Farin F, Wilkerson H, Blough D, Cheng G, Rettie A (2005) Association of vitamin K epoxide reductase complex 1 (VKORC1) variants with warfarin dose in a Hong Kong Chinese patient population. Pharmacogenet Genomics 15:687–691

    Article  CAS  PubMed  Google Scholar 

  36. Tham L, Goh B, Nafziger A, Guo J, Wang L, Soong R, Lee S (2005) A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9. Clin Pharmacol Ther 80(4):346–355

    Article  CAS  Google Scholar 

  37. Kaila N, Straka R, Brundage R (2006) Mixture models and subpopulation classification: a pharmacokinetic simulation study and application to metoprolol CYP2D6 phenotype. J Pharmacokinet Pharmacodyn 34(2):141–155

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work in this study was financially supported by Eli Lilly and Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunice Yuen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuen, E., Gueorguieva, I., Wise, S. et al. Ethnic differences in the population pharmacokinetics and pharmacodynamics of warfarin. J Pharmacokinet Pharmacodyn 37, 3–24 (2010). https://doi.org/10.1007/s10928-009-9138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-009-9138-4

Keywords

Navigation