Skip to main content
Log in

Comparison of Microplastic Characteristics in Mulched and Greenhouse Soils of a Major Agriculture Area, Korea

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Soil microplastic (MP) contamination through plastic mulch and greenhouse soils is a global concern. However, whether plastic mulch contaminates the soil to a greater or lesser extent than the contamination caused by building greenhouses with MPs has not been documented. This study is the first to examine and compare the abundance and distribution of MPs in greenhouses and mulched soils of Korean agriculture field to obtain the polymer types and sizes of MPs present. The MP abundances in the greenhouse and mulched soils ranged from 50 to 379 and 158 to 943 particles kg− 1, respectively, with an average abundance of 221.4 and 356.8 particles kg− 1. No significant differences (p > 0.05) were observed in soil MP contamination between the greenhouse and mulching sites. At both sites, fragments (91%) were the predominant MP shape. MPs with a size < 300 μm were dominant, covering 99.57% of the mulch site and 99.69% of the greenhouse. Six MP polymers in the greenhouse and mulching sites: polypropylene, polyethylene, polyethylene terephthalate, polyvinyl chloride, polyethylene amide, and polymethyl methacrylate were identified. The soil MP contaminants in greenhouses and mulch sites in the Haean Basin have originated from the use of plastic films, and ropes. The first-hand data established by this study showed the same degree of MP contamination in mulch and greenhouse soils, which provides important background information on MP characteristics to understand the environmental behavior and ecological effects of MPs in soil systematically and comprehensively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Edrisi SA, Rakshit A, Dubey PK, Abhilash PC, Singh SK, Patra AK, Pathak H (2021) Managing Soil Resources for Human Health and Environmental sustainability. In: Rakshit A, Singh S, Abhilash P, Biswas A (eds) Soil Science: Fundamentals to recent advances. Springer., Singapore, pp 3–11

    Chapter  Google Scholar 

  2. Mohajan H (2019) The first industrial revolution: creation of a new global human era. Int J Humanit Soc 5:377–387

    Google Scholar 

  3. Khan I, Hou F, Le HP (2021) The impact of natural resources, energy consumption, and population growth on environmental quality: fresh evidence from the United States of America. Sci Total Environ 754:142222

    Article  CAS  PubMed  Google Scholar 

  4. Wang F, Harindintwali JD, Yuan Z, Wang M, Wang F, Li S, Yin Z, Huang L, Fu Y, Li L, Chang SX (2021) Technologies and perspectives for achieving carbon neutrality. Innov 2:100180

    CAS  Google Scholar 

  5. Lee J-Y (2022) Emerging contaminants in soil and groundwater systems: Occurrence, impact, fate and transport edited by Bin Gao. Epis J Int Geosci 45:345–346

    Google Scholar 

  6. Lee JG, Cho SR, Jeong ST, Hwang HY, Kim PJ (2019) Different response of plastic film mulching on greenhouse gas intensity (GHGI) between chemical and organic fertilization in maize upland soil. Sci Total Environ 696:133827

    Article  CAS  PubMed  Google Scholar 

  7. Kopittke PM, Menzies NW, Wang P, McKenna BA, Lombi E (2019) Soil and the intensification of agriculture for global food security. Environ Inter 132:105078

    Article  Google Scholar 

  8. Schulte LA, Dale BE, Bozzetto S, Liebman M, Souza GM, Haddad N, Richard TL, Basso B, Brown RC, Hilbert JA, Arbuckle JG (2022) Meeting global challenges with regenerative agriculture producing food and energy. Nat Sustain 5:384–388

    Article  Google Scholar 

  9. Chia RW, Lee JY, Jang J, Lee S (2022) Effects of land use change on soil moisture content at different soil depths. J Geol Soc Korea 58:117–135

    Article  Google Scholar 

  10. Das SK, Prasad SK, Laha R, Mishra VK (2022) Land Degradation Neutrality. Biotica Res Today 4:181–183

    Google Scholar 

  11. Rust N, Lunder OE, Iversen S, Vella S, Oughton EA, Breland TA, Glass JH, Maynard CM, McMorran R, Reed MS (2022) Perceived Causes and Solutions to Soil Degradation in the UK and Norway. Land 11:131

    Article  Google Scholar 

  12. Nawaz A, Farooq M, Ul-Allah S, Gogoi N, Lal R, Siddique KH (2021) Sustainable soil management for food security in South Asia. J Soil Sci Plant Nutr 21:258–275

    Article  CAS  Google Scholar 

  13. Devi RS, Kannan VR, Natarajan K, Nivas D, Kannan K, Chandru S, Antony AR (2016) The role of microbes in plastic degradation. Environ Waste Manage 341:341–370

    Google Scholar 

  14. Rasmussen SC (2021) From parkesine to celluloid: the birth of organic plastics. Angew Chem 133:8090–8094

    Article  Google Scholar 

  15. Craig C, Fox DW, Zhai L, Walters LJ (2022) In-situ microplastic egestion efficiency of the eastern oyster Crassostrea virginica. Mar Pollut Bull 178:113653

    Article  CAS  PubMed  Google Scholar 

  16. Jethy B, Paul S, Das SK, Adesina A, Mustakim SM (2022) Critical review on the evolution, properties, and utilization of plasticwastes for construction applications. J Mater Cycles Waste Manag 24:435–451

    Article  CAS  Google Scholar 

  17. Huang Y, Liu Q, Jia W, Yan C, Wang J (2020) Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ Pollut 260:114096

    Article  CAS  PubMed  Google Scholar 

  18. Wang K, Chen W, Tian J, Niu F, Xing Y, Wu Y, Xu L (2022) Accumulation of microplastics in greenhouse soil after long-term plastic film mulching in Beijing, China. Sci Total Environ 828:154544

    Article  CAS  PubMed  Google Scholar 

  19. Kim SK, Kim JS, Lee H, Lee HJ (2021) Abundance and characteristics of microplastics in soils with different agricultural practices: importance of sources with internal origin and environmental fate. J Hazard Mater 403:123997

    Article  CAS  PubMed  Google Scholar 

  20. Wang X, Fan J, Xing Y, Xu G, Wang H, Deng J, Wang Y, Zhan F, Li P, Li Z (2019) The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv Agron 153:121–173

    Article  CAS  Google Scholar 

  21. Raza M, Lee JY (2019) Factors affecting spatial pattern of groundwater hydrochemical variables and nitrate in agricultural region of Korea. Episodes 42:135–148

    Article  Google Scholar 

  22. Lee JG, Chae HG, Hwang HY, Kim PJ, Cho SR (2021) Effect of plastic film mulching on maize productivity and nitrogen use efficiency under organic farming in South Korea. Sci Total Environ 787:147503

    Article  CAS  PubMed  Google Scholar 

  23. Haixin Z, Yimei H, Shaoshan A, Haohao L, Xiaoqian D, Pan W, Mengyuan F (2022) Land-use patterns determine the distribution of soil microplastics in typical agricultural areas on the eastern Qinghai-Tibetan Plateau. J Hazard Mater 426:127806

    Article  PubMed  Google Scholar 

  24. Zhang Z, Peng W, Duan C, Zhu X, Wu H, Zhang X, Fang L (2022b) Microplastics pollution from different plastic mulching years accentuate soil microbial nutrient limitations. Gondwana Res 108:91–101

    Article  CAS  Google Scholar 

  25. Xu L, Han L, Li J, Zhang H, Jones K, Xu EG (2022) Missing relationship between meso-and microplastics in adjacent soils and sediments. J Hazard Mater 424:127234

    Article  CAS  PubMed  Google Scholar 

  26. Lee J-Y, Lee KS, Park Y, Choi H-M, Jo Y-J (2013) Chemical and isotopic compositions of groundwater and stream water in a heavy agricultural basin of Korea. J Geol Soc India 82:169–180

    Article  CAS  Google Scholar 

  27. Lee J-Y, Cha J, Chia RW (2022) Current status of researches on microplastics in groundwater and perspectives. J Geol Soc Korea 58:233–241

    Article  Google Scholar 

  28. Korea Meteorological Administration (2022) https://www.weather.go.kr/w/index.do/

  29. Chia RW, Son Y, Cho W, Lee YG, Tsetsegmaa G, Kang H (2020) Do different land use changes in a deciduous forest ecosystem result in alterations in soil organic C and total N stocks? Plant Soil 457:153–165

    Article  CAS  Google Scholar 

  30. Xu G, Yang L, Xu L, Yang J (2022a) Soil microplastic pollution under different land uses in tropics, southwestern China. Chemosphere 289:133176

    Article  CAS  PubMed  Google Scholar 

  31. Chia RW, Lee JY, Jang J, Cha J (2022) Errors and recommended practices that should be identified to reduce suspected concentrations of microplastics in soil and groundwater: a review. Environ Tech Innov 28:102933

    Article  CAS  Google Scholar 

  32. Perez CN, Carré F, Hoarau-Belkhiri A, Joris A, Leonards PE, Lamoree MH (2022) Innovations in analytical methods to assess the occurrence of microplastics in soil. J Environ Chem Engr 10:107421

    Article  CAS  Google Scholar 

  33. Cutroneo L, Reboa A, Geneselli I, Capello M (2021) Considerations on salts used for density separation in the extraction of microplastics from sediments. Mar Pollut Bull 166:112216

    Article  CAS  PubMed  Google Scholar 

  34. Tirkey A, Upadhyay LS (2021) Microplastics: an overview on separation, identification and characterization of microplastics. Mar Pollut Bull 170:112604

    Article  CAS  PubMed  Google Scholar 

  35. Bi D, Wang B, Li Z, Zhang Y, Ke X, Huang C, Liu W, Luo Y, Christie P, Wu L (2023) Occurrence and distribution of microplastics in coastal plain soils under three land-use types. Sci Total Environ 855:159023

    Article  CAS  PubMed  Google Scholar 

  36. Zhang H, Huang Y, An S, Zhao J, Xiao L, Li H, Huang Q (2022) Microplastics trapped in soil aggregates of different land-use types: a case study of Loess Plateau terraces, China. Environ Pollut 310:119880

    Article  CAS  PubMed  Google Scholar 

  37. Cunsolo S, Williams J, Hale M, Read DS, Couceiro F (2021) Optimising sample preparation for FTIR-based microplastic analysis in wastewater and sludge samples: multiple digestions. Anal Bioanal Chem 413:3789–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Primpke S, Cross RK, Mintenig SM, Simon M, Vianello A, Gerdts G, Vollertsen J (2020) Toward the systematic identification of microplastics in the environment: evaluation of a new independent software tool (siMPle) for spectroscopic analysis. Appl Spectrosc 74:1127–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Uurasjärvi E, Sainio E, Setälä O, Lehtiniemi M, Koistinen A (2021) Validation of an imaging FTIR spectroscopic method for analyzing microplastics ingestion by finnish lake fish (Perca fluviatilis and Coregonus albula). Environ Pollut 288:117780

    Article  PubMed  Google Scholar 

  40. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  41. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. Am Stat Assoc 47:583–621

    Article  Google Scholar 

  42. Zhou B, Wang J, Zhang H, Shi H, Fei Y, Huang S, Tong Y, Wen D, Luo Y, Barceló D (2020) Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: multiple sources other than plastic mulching film. J Hazard Mater 388:121814

    Article  CAS  PubMed  Google Scholar 

  43. Samandra S, Johnston JM, Jaeger JE, Symons B, Xie S, Currell M, Ellis AV, Clarke BO (2022) Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia. Sci Total Environ 802:149727

    Article  CAS  PubMed  Google Scholar 

  44. Feng S, Lu H, Liu Y (2021) The occurrence of microplastics in farmland and grassland soils in the Qinghai-Tibet plateau: different land use and mulching time in facility agriculture. Environ Pollut 279:116939

    Article  CAS  PubMed  Google Scholar 

  45. Harms IK, Diekötter T, Troegel S, Lenz M (2021) Amount, distribution and composition of large microplastics in typical agricultural soils in Northern Germany. Sci The Total Environ 758:143615

    Article  CAS  Google Scholar 

  46. Stefano N, Pleissner D (2022) Quantification and analysis of surface macroplastic contamination on arable areas. J Soils Sediments 22:757–768

    Article  Google Scholar 

  47. Choi YR, Kim YN, Yoon JH, Dickinson N, Kim KH (2021) Plastic contamination of forest, urban, and agricultural soils: a case study of Yeoju City in the Republic of Korea. J Soils Sediment 21:1962–1973

    Article  CAS  Google Scholar 

  48. Wang J, Li J, Liu S, Li H, Chen X, Peng C, Zhang P, Liu X (2021b) Distinct microplastic distributions in soils of different land-use types: a case study of chinese farmlands. Environ Pollut 269:116199

    Article  CAS  PubMed  Google Scholar 

  49. Liu X, Tang N, Yang W, Chang J (2022) Microplastics pollution in the soils of various land-use types along Sheshui River basin of Central China. Sci Total Environ 806:150620

    Article  CAS  PubMed  Google Scholar 

  50. Feng S, Lu H, Tian P, Xue Y, Lu J, Tang M, Feng W (2020) Analysis of microplastics in a remote region of the Tibetan Plateau: implications for natural environmental response to human activities. Sci Total Environ 739:140087

    Article  CAS  PubMed  Google Scholar 

  51. Chouchene K, Nacci T, Modugno F, Castelvetro V, Ksibi M (2022) Soil contamination by microplastics in relation to local agricultural development as revealed by FTIR, ICP-MS and pyrolysis-GC/MS. Environ Pollut 303:119016

    Article  CAS  PubMed  Google Scholar 

  52. Bläsing M, Amelung W (2018) Plastics in soil: Analytical methods and possible sources. Sci Total Environ 612:422–435

    Article  PubMed  Google Scholar 

  53. Boughattas I, Hattab S, Zitouni N, Mkhinini M, Missawi O, Bousserrhine N, Banni M (2021) Assessing the presence of microplastic particles in tunisian agriculture soils and their potential toxicity effects using Eisenia andrei as bioindicator. Sci Total Environ 796:148959

    Article  CAS  PubMed  Google Scholar 

  54. Piehl S, Leibner A, Löder MG, Dris R, Bogner C, Laforsch C (2018) Identification and quantification of macro-and microplastics on an agricultural farmland. Sci Rep 8:1–9

    Article  Google Scholar 

  55. Zhang Y, Wang K, Chen W, Ba Y, Khan K, Chen W, Tu C, Chen C, Xu L (2022a) Effects of land use and landscape on the occurrence and distribution of microplastics in soil, China. Sci Total Environ 847:157598

    Article  CAS  PubMed  Google Scholar 

  56. Álvarez-Lopeztello J, Robles C, del Castillo RF (2021) Microplastic pollution in neotropical rainforest, savanna, pine plantations, and pasture soils in lowland areas of Oaxaca, Mexico: preliminary results. Ecol Indic 121:107084

    Article  Google Scholar 

  57. Yu L, Zhang J, Liu Y, Chen L, Tao S, Liu W (2021) Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China. Sci Total Environ 756:143860

    Article  CAS  PubMed  Google Scholar 

  58. Tian X, Yang M, Guo Z, Chang C, Li J, Guo Z, Wang R, Li Q, Zou X (2022) Plastic mulch film induced soil microplastic enrichment and its impact on wind-blown sand and dust. Sci Total Environ 813:152490

    Article  CAS  PubMed  Google Scholar 

  59. Maja MM, Ayano SF (2021) The impact of population growth on natural resources and farmers’ capacity to adapt to climate change in low-income countries. Earth Syst Environ 5:271–283

    Article  Google Scholar 

  60. Nemali K (2022) History of controlled environment horticulture: greenhouses. HortScience 57:239–246

    Article  Google Scholar 

  61. Parlato MC, Valenti F, Porto SM (2020) Covering plastic films in greenhouses system: a GIS-based model to improve post use suistainable management. J Environ Manage 263:110389

    Article  PubMed  Google Scholar 

  62. Soussi M, Chaibi MT, Buchholz M, Saghrouni Z (2022) Comprehensive review on climate control and cooling systems in greenhouses under Hot and arid conditions. Agronomy 12:626

    Article  Google Scholar 

  63. Yano A, Cossu M (2019) Energy sustainable greenhouse crop cultivation using photovoltaic technologies. Renew Sust Energ Rev 109:116–137

    Article  Google Scholar 

  64. Sahaidak T, Huzynets N (2021) Investigation of Greenhouse Monitoring and Control System. Advanc Cyber-Phys Syst 6:54–62

    Article  Google Scholar 

  65. Chia RW, Lee JY, Kim H, Jang J (2021) Microplastic pollution in soil and groundwater: a review. Environ Chem Lett 19:4211–4224

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Environmental Industry & Technology Institute (KEITI) through Measurement and Risk assessment Program for Management of Microplastics Program, funded by Korea Ministry of Environment (MOE) (2020003110010) and this research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No.2019R1A6A1A03033167).

Funding

This work was funded by Korea Ministry of Environment (MOE) (2020003110010) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No.2019R1A6A1A03033167).

Author information

Authors and Affiliations

Authors

Contributions

RWChia: Writing of original draft, conceptualization, statistical analysis, formal analysis, validation, writing – review, and editing of subsequent drafts and investigation. J-YL: Supervision, resources, review and editing, and funding acquisition. SL: Drew figures, Investigation and Resources. ML: Investigation, drew figures, review and editing. All authors read and approved the manuscript’s final version.

Corresponding author

Correspondence to Jin-Yong Lee.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 36 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chia, R.W., Lee, JY., Lee, M. et al. Comparison of Microplastic Characteristics in Mulched and Greenhouse Soils of a Major Agriculture Area, Korea. J Polym Environ 31, 2216–2229 (2023). https://doi.org/10.1007/s10924-022-02746-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02746-1

Keywords

Navigation