Skip to main content
Log in

Efficient Decontamination of Cationic Dyes from Synthetic Textile Wastewater Using Poly(acrylic acid) Composite Containing Amino Functionalized Biochar: A Mechanism Kinetic and Isotherm Study

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Hydrogel-incorporated adsorbents are promising adsorbents for organic dyes due to their three-dimensional structure, economical nature, ease of use, and modifiable functional groups. To this aim, new poly acrylic acid/modified biochar composite hydrogel was synthesized using Melamine functionalized biochar and acrylic acid, employing in-situ radical polymerizations. The chemical structure of the prepared hydrogel was confirmed using Fourier transform infrared (FT-IR) spectroscopy. Thermal stability and morphology of adsorbents were determined using Thermo-gravimetric analysis (TGA) and Scanning electron microscope (SEM), respectively. The removal efficiency and adsorption capacity of the synthesized hydrogel were measured by analyzing the impact of influential parameters such as pH, initial dye concentration, contact time, and dosage in the elimination of methylene blue, crystal violet, and safranin O from synthetic textile wastewater. The kinetic study of the adsorption process was performed by using pseudo-first-order and pseudo-second-order models. Langmuir, Freundlich, and Temkin isotherms were implemented to investigate the adsorption mechanism. The experimental values are in line with the calculated results obtained from the Langmuir isotherm and the pseudo-second-order model which indicates the chemical and monolayer adsorption mechanism is the favored process. In addition, the R2 values ​​obtained from pseudo-first-order model, Freundlich and Temkin isotherms indicates the auxiliary involvement of physisorption and multilayer mechanisms. The maximum adsorbent capacity of 638.436 mg.g−1, 462.550 mg.g−1, and 711.340 mg.g−1 was obtained for Methylene blue, Crystal violet, and Safranin O dyes, respectively. Adsorbent recovery and reusability during seven cycles divulge acceptable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Palansooriya KN, Yang Y, Tsang YF, Sarkar B, Hou D, Cao X et al (2019) Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: a review. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2019.1629803

    Article  Google Scholar 

  2. WHO and UNICEF Geneva (2021) https://apps.who.int/iris/handle/10665/345081/ Progress on household drinking water, sanitation and hygiene 2000–2020: five years into the SDG.

  3. Lu SY, Zhang HM, Sojinu SO, Liu GH, Zhang JQ, Ni HG (2015) Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China. Environ Monit Assess. https://doi.org/10.1007/s10661-014-4220-9

    Article  PubMed  Google Scholar 

  4. Xiao J, Lv W, Xie Z, Tan Y, Song Y, Zheng Q (2016) Environmentally friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via π–π interactions. J Mater Chem. https://doi.org/10.1039/C6TA04119A

    Article  Google Scholar 

  5. Dai L, Zhu W, He L, Tan F, Zhu N, Zhou Q et al (2018) Calcium-rich biochar from crab shell: an unexpected super adsorbent for dye removal. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.07.090

    Article  PubMed  Google Scholar 

  6. Hanafi MF, Sapawe N (2020) A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater Today Proceedings. https://doi.org/10.1016/J.MATPR.2021.01.258

    Article  Google Scholar 

  7. Richins RD, Keneva I, Mulchandani A, Chen W (1997) Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol. https://doi.org/10.1038/nbt1097-984

    Article  PubMed  Google Scholar 

  8. Dong C, Lu J, Qiu B, Shen B, Xing M, Zhang J (2018) Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions. Appl Catal B. https://doi.org/10.1016/j.apcatb.2017.10.011

    Article  Google Scholar 

  9. Gupta AD, Rene ER, Giri BS, Pandey A, Singh H (2021) Adsorptive and photocatalytic properties of metal oxides towards arsenic remediation from water: a review. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.106376

    Article  PubMed  Google Scholar 

  10. Naga Jyothi MSV, Harafan A, Gupta SS, Neethu N, Singhal G, Ramaiah BJ et al (2022) Chitosan immobilised granular FeOOH-MnxOy bimetal-oxides nanocomposite for the adsorptive removal of lead from water. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2022.107353

    Article  Google Scholar 

  11. Ullah Khan Z, Ullah Khan W, Ullah B, Ali W, Ahmad B, Yap PS (2021) Graphene oxide/PVC composite papers functionalized with p-Phenylenediamine as high-performance sorbent for the removal of heavy metal ions. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.105916

    Article  Google Scholar 

  12. Gholizadeh M, Hu X (2021) Removal of heavy metals from soil with biochar composite: a critical review of the mechanism. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.105830

    Article  Google Scholar 

  13. Li IC, Chen YH, Chen YC (2022) Sodium alginate-g-poly(sodium acrylate) hydrogel for the adsorption–desorption of ammonium nitrogen from aqueous solution. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2022.102999

    Article  Google Scholar 

  14. Zhuang Y, Shi B (2019) Polymer hydrogels with enhanced stability and heterogeneous Fenton activity in organic pollutant removal. J Environ Sci 85:147–155. https://doi.org/10.1016/j.jes.2019.05.022

    Article  CAS  Google Scholar 

  15. Gu X, Xu Y, Li S, Wang Z, Meng Q, Yu J (2021) Preparation of a photocured biocompatible hydrogel for urethral tissue engineering. ACS Appl Polym Mater. https://doi.org/10.1021/acsapm.1c00427

    Article  Google Scholar 

  16. Pochan DJ, Schneider JP, Kretsinger J, Ozbas B, Rajagopal K, Haines L (2003) Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J Am Chem Soc. https://doi.org/10.1021/ja0353154

    Article  PubMed  Google Scholar 

  17. Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2015.07.053

    Article  Google Scholar 

  18. Lee I, Park CW, Yoon SS, Yang HM (2019) Facile synthesis of copper ferrocyanide-embedded magnetic hydrogel beads for the enhanced removal of cesium from water. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.02.199

    Article  PubMed  Google Scholar 

  19. Li Y, Cao H, Liu W, Liu P (2022) Effective degradation of tetracycline via recyclable cellulose nanofibrils/polyvinyl alcohol/Fe3O4 hybrid hydrogel as a photo-Fenton catalyst. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.135665

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pakdel PM, Peighambardoust SJ (2018) A review on acrylic based hydrogels and their applications in wastewater treatment. J Environ Manag. https://doi.org/10.1016/j.jenvman.2018.03.076

    Article  Google Scholar 

  21. Hu XS, Liang R, Sun G (2018) Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution. J Mater Chem A. https://doi.org/10.1039/C8TA04722G

    Article  Google Scholar 

  22. Badri AF, Palapa NR, Mohadi R, Mardiyanto LA (2020) Cationic dye removal by magnesium aluminum-biochar composite from aqueous. Int j sci res sci technol 9(7):186–190

    Google Scholar 

  23. Mahpishanian S, Sereshti H (2014) Graphene oxide-based dispersive micro-solid phase extraction for separation and preconcentration of nicotine from biological and environmental water samples followed by gas chromatography-flame ionization detection. Talenta. https://doi.org/10.1016/j.talanta.2014.06.004

    Article  Google Scholar 

  24. El-Said WA, El-Khouly ME, Ali MH, Rashad RT, Elshehy EA, Al-Bogami AS (2018) Synthesis of mesoporous silica-polymer composite for the chloridazon pesticide removal from aqueous media. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2018.03.027

    Article  Google Scholar 

  25. Bradley D, Williams G, Lawton M (2010) Drying of organic solvents: quantitative evaluation of the efficiency of several desiccants. J Org Chem Res. https://doi.org/10.1021/jo101589h

    Article  Google Scholar 

  26. Fan Q, Sun J, Chu L, Cui L, Quan G, Yan J et al (2018) Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.05.044

    Article  PubMed  Google Scholar 

  27. Hossain S, Kabir SF, Rahman MS, Sultana S (2021) Jute cellulose nanocrystal/poly(N, N-dimethylacryl amide-co-3-methacryloxypropyltrimethoxysilane) hybrid hydrogels for removing methylene blue dye from aqueous solution. J Sci: Adv Mater Devices. https://doi.org/10.1016/j.jsamd.2021.02.005

    Article  Google Scholar 

  28. Duman O, Polat TG, Diker CÖ, Tunç S (2020) Agar/κ-carrageenan composite hydrogel adsorbent for the removal of Methylene Blue from water. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.05.191

    Article  PubMed  Google Scholar 

  29. Yadav S, Asthana A, Chakraborty R, Jain B, Singh AK, Carabineiro SAC et al (2020) Cationic dye removal using novel magnetic/activated charcoal/βcyclodextrin/alginate polymer nanocomposite. Nanomaterial. https://doi.org/10.3390/nano10010170

    Article  Google Scholar 

  30. Yuan P, Wang J, Pan Y, Shen B, Wu C (2019) Review of biochar for the management of contaminated soil: preparation, application and prospect. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2018.12.400

    Article  PubMed  Google Scholar 

  31. Fan Q, Cui L, Quan G, Wang S, Sun J, Han X et al (2018) Effects of wet oxidation process on biochar surface in acid and alkaline soil environments. Materials 11(12):2362. https://doi.org/10.3390/ma11122362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mukome FND, Zhang X, Silva LCR, Six J, Parikh SJ (2013) Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J Agric Food Chem. https://doi.org/10.1021/jf3049142

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cristina M, Farè S, Candiani G (2019) Foundations of Biomaterials Engineering, 1st edn. Elsevier Science & Technology, London. https://doi.org/10.1016/C2015-0-05967-6

    Book  Google Scholar 

  34. Logansen AV, Litovchenko G (1965) Characteristic bands of the valence vibrations of the NO2 group in infrared absorption spectra. Part 1. Experimental data and band assignments. Appl Spectrosc. https://doi.org/10.1007/BF00655122

    Article  Google Scholar 

  35. Sevukarajan M, Thanuja B, Sodanapalli R, Nair R (2011) Synthesis and characterization of a pharmaceutical co-crystal:(aceclofenac: nicotinamide). J Pharm Sci Res 3(6):1288

    CAS  Google Scholar 

  36. Qi K, Zeda A, Yang Y, Chen Q, Khataee A (2020) Design of 2D–2D NiO/g-C3N4 heterojunction photocatalysts for degradation of an emerging pollutant. Res Chem Intermed. https://doi.org/10.1007/s11164-020-04262-0

    Article  Google Scholar 

  37. Wang D, Zhang X, Luo S, Li S (2012) Preparation and property analysis of melamine formaldehyde foam. Adv Mater Phys Chem. https://doi.org/10.4236/ampc.2012.24B018

    Article  Google Scholar 

  38. Li F, Zhao Y, Wang Q, Wang X, Hao Y, Liu R et al (2015) Enhanced visible-light photocatalytic activity of active Al2O3/g-C3N4 heterojunctions synthesized via surface hydroxyl modification. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2014.09.035

    Article  PubMed  Google Scholar 

  39. Max JJ, Chapados C (2004) Infrared spectroscopy of aqueous carboxylic acids: comparison between different acids and their salts. J Phys Chem A. https://doi.org/10.1021/jp036401t

    Article  Google Scholar 

  40. Sennakesavan G, Mostakhdemin M, Dkhar LK, Seyfoddin A, Fatihhi SJ (2020) Acrylic acid/acrylamide based hydrogels and its properties-a review. Polym Degrad Stab 180:109308. https://doi.org/10.1016/j.polymdegradstab

    Article  CAS  Google Scholar 

  41. Rao GS, Nabipour H, Zhang P, Wang X, Xing W, Song L et al (2020) Lightweight, hydrophobic and recyclable carbon foam derived from lignin–resorcinol–glyoxal resin for oil and solvent spill capture. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2020.02.092

    Article  Google Scholar 

  42. Szczotok AM, Madsen D, Serrano A, Carmona M, Van Hees P, Rodriguez JF et al (2021) Flame retardancy of rigid polyurethane foams containing thermo regulating microcapsules with phosphazene-based monomers. J Mater Sci. https://doi.org/10.1007/s10853-020-05389-6

    Article  Google Scholar 

  43. Jia P, Tan H, Liu K, Gao W (2018) Removal of methylene blue from aqueous solution by bone char. Appl Sci. https://doi.org/10.3390/app8101903

    Article  Google Scholar 

  44. Sieren B, Baker J, Wang X, Rozzoni SJ, Carlson K, McBain A et al (2020) Sorptive Removal of color dye safranin o by fibrous clay. Adv Mater Sci Eng. https://doi.org/10.1155/2020/8845366

    Article  Google Scholar 

  45. Mittal H, Kumar V, Alhassan SM, Ray SS (2017) Modification of gum ghatti via grafting with acrylamide and analysis of its flocculation, adsorption, and biodegradation properties. Biomacromol. https://doi.org/10.1016/j.ijbiomac.2018.03.131

    Article  Google Scholar 

  46. Abdel Aziz MS, Salma HE (2018) Effect of vinyl montmorillonite on the physical, responsive and antimicrobial properties of the optimized polyacrylic acid/chitosan superabsorbent via Box-Behnken model. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.05.081

    Article  PubMed  Google Scholar 

  47. McNeill IC, Sadegi SMT (1990) Thermal stability and degradation mechanisms of poly(Acrylic Acid) and its salts: part 1 poly(Acrylic Acid). Polym Degrad Stab. https://doi.org/10.1016/0141-3910(90)90034-5

    Article  Google Scholar 

  48. Fyfe CA, McKinnon MS (1986) Investigation of the thermal degradation of poly(acry1ic acid) and poly(methacry1ic acid) by high-resolution I3C CP/MAS NMR spectroscopy. Macromolecules. https://doi.org/10.1021/ma00161a021

    Article  Google Scholar 

  49. Tong XM, Zhang T, Yang MZ, Zhang Q (2010) Preparation and characterization of novel melamine modified poly(urea–formaldehyde) self-repairing microcapsules. Colloids Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2010.09.009

    Article  Google Scholar 

  50. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir. https://doi.org/10.1021/la900923z

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hafezi Moghaddam R, Haj Shabani AM, Dadfarnia S (2019) Synthesis of new hydrogels based on pectin by electron beam irradiation with and without surface modification for methylene blue removal. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.102919

    Article  Google Scholar 

  52. Laskar N, Kumar U (2018) Adsorption of safranin (Cationic) dye from Water by Bambusa tulda : characterization and ANN modeling. Environ Eng Sci. https://doi.org/10.1089/ees.2017.0532

    Article  Google Scholar 

  53. My Phuong DT, Loc NX (2022) Rice straw biochar and magnetic rice straw biochar for safranin o adsorption from aqueous solution. Water. https://doi.org/10.3390/w14020186

    Article  Google Scholar 

  54. Dai H, Huang H (2017) Enhanced swelling and responsive properties of pineapple peel carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogel by the introduction of carclazyte. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.6b04899

    Article  PubMed  Google Scholar 

  55. Sharma K, Kaith BS, Kumar V, Kalia S, Kumar V, Swart HC (2014) Water retention and dye adsorption behavior of Gg-cl-poly(acrylic acid-aniline) based conductive hydrogels. Geoderma. https://doi.org/10.1016/j.geoderma.2014.04.035

    Article  Google Scholar 

  56. Zhang Z, Gao T, Si S, Liu Q, Wu Y, Zhou G (2018) One-pot preparation of P (TA-TEPA)-PAM-RGO ternary composite for high efficient Cr (VI) removal from aqueous solution. Chem Eng J. https://doi.org/10.1016/j.cej.2018.02.126

    Article  PubMed  PubMed Central  Google Scholar 

  57. Foroutan R, Peighambardoust SJ, Peighambardoust SH, Pateiro M, Lorenzo JM (2021) Adsorption of crystal violet dye using activated carbon of lemon wood and activated carbon/Fe3O4 magnetic nanocomposite from aqueous solutions a kinetic equilibrium and thermodynamic study. Molecules. https://doi.org/10.3390/molecules26082241

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wathukarage A, Herath I, Iqbal MCM, Vithanage M (2019) Mechanistic understanding of crystal violet dye sorption by woody biochar: implications for wastewater treatment. Environ Geochem Health. https://doi.org/10.1007/s10653-017-0013-8

    Article  PubMed  Google Scholar 

  59. Song X, Chai Z, Zhu Y, Li C, Liang X (2019) Preparation and characterization of magnetic chitosan-modified diatomite for the removal of gallic acid and caffeic acid from sugar solution. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.04.043

    Article  PubMed  Google Scholar 

  60. Fan S, Huang Z, Zhang Y, Hu H, Liang X, Gong S et al (2019) Magnetic chitosan-hydroxyapatite composite microspheres: preparation, characterization, and application for the adsorption of phenolic substances. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.11.078

    Article  PubMed  Google Scholar 

  61. Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2010.11.029

    Article  PubMed  Google Scholar 

  62. López-Luna J, Ramírez-Montes LE, Martinez-Vargas S, del Carmen A, González-Chávez M, Carrillo-González R, Solís-Domínguez FA (2019) Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Appl Sci. https://doi.org/10.1007/s42452-019-0977-3

    Article  Google Scholar 

  63. Salunkhe B, Schuman TP (2021) Super-adsorbent hydrogels for removal of methylene blue from aqueous solution: dye adsorption isotherms, kinetics, and thermodynamic properties. Macromol. https://doi.org/10.3390/macromol1040018

    Article  Google Scholar 

  64. Nazar de Souza AP, Licea YE, Colaço MV, Senra JD, Carvalho NMF (2021) Green iron oxides/amino-functionalized MCM-41 composites as adsorbent for anionic azo dye: kinetic and isotherm studies. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.105062

    Article  Google Scholar 

  65. Feng M, Yu S, Wu P, Wang Z, Liu S, Fu J (2021) Rapid, high-efficient and selective removal of cationic dyes from wastewater using hollow polydopamine microcapsules: Isotherm, kinetics, thermodynamics and mechanism. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.148633

    Article  Google Scholar 

  66. Kara A, Demirbel E, Tekin N, Osman B, Beşirli N (2015) Magnetic vinylphenyl boronic acid microparticles for Cr(VI) adsorption: kinetic, isotherm and thermodynamic studies. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2014.12.011

    Article  PubMed  Google Scholar 

  67. Gimbert F, Morin-Crini N, Renault F, Badot PM, Crini G (2008) Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2007.12.072

    Article  PubMed  Google Scholar 

  68. Hameed BH, Ahmad AA (2009) Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2008.08.084

    Article  PubMed  Google Scholar 

  69. Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthès V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem. https://doi.org/10.1016/j.apgeochem.2006.09.010

    Article  Google Scholar 

  70. Yadav S, Asthana A, Singh AK, Chakraborty R, Sree Vidya S, Md ABHS et al (2021) Adsorption of cationic dyes, drugs and metal from aqueous solutions using a polymer composite of magnetic/β-cyclodextrin/activated charcoal/Na alginate: Isotherm, kinetics and regeneration studies. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.124840

    Article  PubMed  Google Scholar 

  71. Ahmad R, Mirza A (2018) Synthesis of Guar gum/bentonite a novel bionanocomposite: Isotherms, kinetics and thermodynamic studies for the removal of Pb (II) and crystal violet dye. J Mol Liq. https://doi.org/10.1016/j.molliq.2017.11.082

    Article  Google Scholar 

  72. Yadav S, Asthana A, Singh AK, Patel J, Sreevidya S, Carabineiro SAC (2022) Facile preparation of methionine-functionalized graphene oxide/chitosan polymer nanocomposite aerogel for the efficient removal of dyes and metal ions from aqueous solutions. Environ Nanotechnol Monit Manag. https://doi.org/10.1016/j.enmm.2022.100743

    Article  PubMed  PubMed Central  Google Scholar 

  73. Druzian SP, Zanatta NP, Borchardt RK, Côrtes LN, Streit AFM, Severo EC et al (2021) Chitin-psyllium based aerogel for the efficient removal of crystal violet from aqueous solutions. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2021.02.179

    Article  PubMed  Google Scholar 

  74. Dai H, HuangY HH (2018) Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2017.12.073

    Article  PubMed  Google Scholar 

  75. Mohammed N, Grishkewich N, Berry RM, Tam KC (2015) Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose. https://doi.org/10.1007/s10570-015-0747-3

    Article  Google Scholar 

  76. Bello K, Kunhanna Sarojini B, Narayana B, Rao A, Byrappa K (2018) A study on adsorption behavior of newly synthesized banana pseudo-stem derived superabsorbent hydrogels for cationic and anionic dye removal from effluents. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2017.11.106

    Article  PubMed  Google Scholar 

  77. Gong R, Ye J, Dai W, Yan X, Hu J, Hu X et al (2013) Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon. Ind Eng Chem Res. https://doi.org/10.1021/ie402138w

    Article  Google Scholar 

  78. Li S, Zhang H, Feng J, Xu R, Liu X (2011) Facile preparation of poly(acrylic acid–acrylamide) 482 hydrogels by frontal polymerization and their use in removal of cationic dyes from aqueous solution. J Desal. https://doi.org/10.1016/J.DESAL.2011.06.056

    Article  Google Scholar 

  79. Laskar N, Kumar U (2018) Adsorption of safranin (Cationic) dye from water by bambusa tulda: characterization and ANN modeling. Environ Eng Sci. https://doi.org/10.1089/ees.2017.0532

    Article  Google Scholar 

  80. Sun P, Hui C, Azim Khan R, Du J, Zhang Q, Zhao Y (2015) Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modelling study their adsorption behaviour. Sci Rep. https://doi.org/10.1038/srep12638

    Article  PubMed  PubMed Central  Google Scholar 

  81. Azimvand J, Didehban Kh, Mirshokraie SA (2018) Safranin-O removal from aqueous solutions using lignin nanoparticle-g-polyacrylicacid adsorbent: synthesis, properties, and application. Adsorpt Sci Technol. https://doi.org/10.1177/0263617418777836

    Article  Google Scholar 

  82. Kumar Sahu M, Kishore Patel R (2015) Removal of safranin-O dye from aqueous solution using modified red mud: kinetics and equilibrium studies. RSC Adv. https://doi.org/10.1039/C5RA15780C

    Article  Google Scholar 

  83. Sharafiniaa S, Farrokhniaa A, Ghasemian Lemraski E (2021) Comparative study of adsorption of safranin o by TiO2/activated carbon and chitosan/TiO2/activated carbon adsorbents. Phys Chem Res. https://doi.org/10.22036/PCR.2021.274568.1889

    Article  Google Scholar 

  84. Angelova R, Baldikova E, Pospiskova K, Maderova Z, Safarikova M, Safarik I (2016) Magnetically modified Sargassum horneri biomass as an adsorbent for organic dye removal. J Clean Prod. https://doi.org/10.1016/j.jclepro.2016.07.068

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the infrastructural and experimental facilities at Dr. K C Patel Research and Development Centre, CHARUSAT. AB thankfully acknowledges the receipt of a CHARUSAT Seed Research Grant (CHARUSAT SEED RESEARCH GRANT/KCP/AB) 2019–2022. EM, RIP acknowledges a CHARUSAT PhD Scholars’ Fellowship (CPSF). AMP acknowledges a ScHeme Of Developing High quality research (SHODH) fellowship. The financial assistance from the Council of Scientific & Industrial Research (CSIR) Grant No. 01(3013)/21/EMR-II is gratefully acknowledged by AB. We acknowledge the DST-PURSE program (DO. No. SE/59/Z-23/2010/43, dated 16th March 2011) and its facility.

Funding

Charotar University of Science and Technology,CHARUSAT Seed Research Grant (CHARUSAT SEED RESEARCH GRANT/KCP/AB) 2019–2022.,Council of Scientific and Industrial Research,India,01(3013)/21/EMR-II

Author information

Authors and Affiliations

Authors

Contributions

EM: Methodology, Investigation, Writing—original draft, editing. RIP: Writing—review & editing. AMP: Writing—review & editing. BBB: Preparation of crude biochar. AB: Conceptualization, Methodology, Writing—review & editing, Funding acquisition, Supervision.

Corresponding author

Correspondence to Atanu Banerjee.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosaffa, E., Patel, R.I., Purohit, A.M. et al. Efficient Decontamination of Cationic Dyes from Synthetic Textile Wastewater Using Poly(acrylic acid) Composite Containing Amino Functionalized Biochar: A Mechanism Kinetic and Isotherm Study. J Polym Environ 31, 2486–2503 (2023). https://doi.org/10.1007/s10924-022-02744-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02744-3

Keywords

Navigation