Skip to main content

Advertisement

Log in

Novel Cellulosic Natural Fibers from Abelmoschus Ficulneus Weed: Extraction and Characterization for Potential Application in Polymer Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Owing to the mounting environmental consciousness, natural fibers in composite materials have become inevitable, especially for lightweight semi-structural applications which includes the door panels, side body structures, stressed shell structure and hood components in automotive and aerospace industry. This study represents the properties of raw and NaOH treated novel cellulosic Abelmoschus ficulneus weed plant fibers. The extracted fibers were characterized by physicochemical analysis, fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and Differential scanning calorimetry, single fiber tensile test, optical microscopy, and scanning electron microscopy. The physicochemical analysis found that the extracted fiber possessed higher cellulose content (80.86%). The extracted fiber was also chemically modified by NaOH treatment, which enhanced the tensile and thermal properties. The peak load at which the fiber failure occurred improved from 2.87 N for the untreated fiber to 3.57 N for the treated fiber while the modulus improved from128 MPa to 159 MPa for the untreated and treated fiber. Further, the inflection degradation increased from 349 °C to 352 °C. Hence, with better functional properties, the novel Abelmoschus ficulneus weed fibers can be a potential reinforcement material for the composites used in semi-structural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Thiagamani SMK, Pulikkalparambil H, Siengchin S, Ilyas RA, Krishnasamy S, Muthukumar C, Radzi AM, Rangappa SM (2022) Mechanical, absorption, and swelling properties of jute/kenaf/banana reinforced epoxy hybrid composites: influence of various stacking sequences. Polym Compos. https://doi.org/10.1002/pc.26999

    Article  Google Scholar 

  2. Mohit H, Sanjay MR, Siengchin S, Khan A, Marwani HM, Dzudzevic-Cancar H, Asiri AM (2021) Effect of TiC nanoparticles reinforcement in coir fiber based bio/synthetic epoxy hybrid composites: mechanical and thermal characteristics. J Polym Environ 29(8):2609–2627

    Article  CAS  Google Scholar 

  3. Sumrith N, Techawinyutham L, Sanjay MR, Dangtungee R, Siengchin S (2020) Characterization of alkaline and silane treated fibers of ‘water hyacinth plants’ and reinforcement of ‘water hyacinth fibers’ with bioepoxy to develop fully biobased sustainable ecofriendly composites. J Polym Environ 28(10):2749–2760

    Article  CAS  Google Scholar 

  4. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581

    Article  CAS  Google Scholar 

  5. Alshammari BA, Alotaibi MD, Alothman OY, Sanjay MR, Kian LK, Almutairi Z, Jawaid M (2019) A new study on characterization and properties of natural fibers obtained from olive tree (Olea europaea L.) residues. J Polym Environ 27(11):2334–2340

    Article  CAS  Google Scholar 

  6. Ramesh M, Deepa C, Kumar LR, Sanjay MR, Siengchin S (2020) Life-cycle and environmental impact assessments on processing of plant fibres and its bio-composites: a critical review. J Ind Text. https://doi.org/10.1177/15280837209247

    Article  Google Scholar 

  7. Rajeshkumar G, Hariharan V, Devnani GL, Maran P, Sanjay J, Siengchin MR, Ponmurugan S (2021) Cellulose fiber from date palm petioles as potential reinforcement for polymer composites: physicochemical and structural properties. Polym Compos 42(8):3943–3953

    Article  CAS  Google Scholar 

  8. Mansingh BB, Binoj JS, Anbazhagan VN, Hassan A, Goh S, Siengchin KL, Liu S (2022) Characterization of Cocos nucifera L. peduncle fiber reinforced polymer composites for lightweight sustainable applications. J Appl Polym Sci 139(22):52245

    Article  CAS  Google Scholar 

  9. ArunRamnath R, Mr S, Kushvaha V, Khan A, Seingchin S, Dhakal HN Modification of Fibres and matrices in natural fibre reinforced polymer composites: a comprehensive review. Macromol Rapid Commun e2100862

  10. Madhu P, Sanjay MR, Senthamaraikannan P, Pradeep S, Saravanakumar SS, Yogesha B (2019) A review on synthesis and characterization of commercially available natural fibers: part II. J Nat Fibers 16(1):25–36

    Article  Google Scholar 

  11. Sanjay MR, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A (2019) A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohydr Polym 207:108–121

    Article  Google Scholar 

  12. Fiore V, Badagliacco D, Sanfilippo C, Pirrone R, Siengchin S, Rangappa SM, Botta L (2022) Lemongrass plant as potential sources of reinforcement for biocomposites: a preliminary experimental comparison between leaf and culm fibers. J Polym Environ 15:1–12

    Google Scholar 

  13. Jothibasu S, Mohanamurugan S, Vijay R, Lenin Singaravelu D, Vinod A, Sanjay MR (2020) Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications. J Ind Text 49(8):1036–1060

    Article  CAS  Google Scholar 

  14. Sanjay MR, Yogesha B (2018) Studies on hybridization effect of jute/kenaf/E-glass woven fabric epoxy composites for potential applications: Effect of laminate stacking sequences. J Ind Text 47(7):1830–1848

    Article  CAS  Google Scholar 

  15. Rangappa SM, Siengchin S (2022) Moving towards biofiber-based composites: knowledge gaps and insights. Express Polym Lett 16(5):451–452

    Article  Google Scholar 

  16. Vinod A, Sanjay MR, Suchart S, Jyotishkumar P (2020) Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J Clean Prod 258:120978

    Article  CAS  Google Scholar 

  17. Thyavihalli Girijappa YG, Rangappa M, Parameswaranpillai S, Siengchin S (2019) Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Front Mater 6:226

    Article  Google Scholar 

  18. Sanjay MR, Siengchin S (2021) Editorial corner–a personal view. eXPRESS Polym Lett 15(3):193–193

    Article  Google Scholar 

  19. Jagadeesh P, Puttegowda M, Rangappa M, Siengchin S (2021) A review on extraction, chemical treatment, characterization of natural fibers and its composites for potential applications. Polym Compos 42(12):6239–6264

    Article  CAS  Google Scholar 

  20. Rangappa SM, Siengchin S, Parameswaranpillai J, Jawaid M, Ozbakkaloglu T (2022) Lignocellulosic fiber reinforced composites: progress, performance, properties, applications, and future perspectives. Polym Compos 43(2):645–691

    Article  CAS  Google Scholar 

  21. Puttegowda M, Pulikkalparambil H, Rangappa SM (2021) Trends and developments in natural fiber composites. Appl Sci Eng Progress 14(4):543–552

    Google Scholar 

  22. Thiagamani SMK, Krishnasamy S, Siengchin S (2019) Challenges of biodegradable polymers: an environmental perspective. Appl Sci Eng Prog 12:149

    Google Scholar 

  23. Senthil Muthu Kumar T, Rajini N, Obi Reddy K, Varada Rajulu A, Siengchin S, Ayrilmis N (2018) All-cellulose composite films with cellulose matrix and Napier grass cellulose fibril fillers. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.01.167

    Article  PubMed  Google Scholar 

  24. Senthilkumar K, Ungtrakul T, Chandrasekar M, Senthil Muthu Kumar T, Rajini N, Siengchin S, Pulikkalparambil H, Parameswaranpillai J, Ayrilmis N (2021) Performance of Sisal/Hemp bio-based Epoxy Composites under Accelerated Weathering. J Polym Environ 29:624–636. https://doi.org/10.1007/s10924-020-01904-7

    Article  CAS  Google Scholar 

  25. Krishnasamy S, Thiagamani SMK, Muthukumar C, Tengsuthiwat J, Nagarajan R, Siengchin S, Ismail SO (2019) Effects of stacking sequences on static, dynamic mechanical and thermal properties of completely biodegradable green epoxy hybrid composites. Mater Res Express 6:105351. https://doi.org/10.1088/2053-1591/ab3ec7

    Article  CAS  Google Scholar 

  26. Krishnasamy S, Muthukumar C, Nagarajan R, Thiagamani SMK, Saba N, Jawaid M, Siengchin S, Ayrilmis N (2019) Effect of fibre loading and ca(OH) 2 treatment on thermal, mechanical, and physical properties of pineapple leaf fibre/polyester reinforced composites. Mater Res Express 6:085545. https://doi.org/10.1088/2053-1591/ab2702

    Article  CAS  Google Scholar 

  27. Arul Marcel Moshi A, Ravindran D, Sundara Bharathi SR, Padma SR, Indran S, Divya D (2020) Characterization of natural cellulosic fiber extracted from Grewia damine flowering plant’s stem. Int J Biol Macromol 164:1246–1255. https://doi.org/10.1016/j.ijbiomac.2020.07.225

    Article  CAS  Google Scholar 

  28. Khan A, Vijay R, Singaravelu DL, Sanjay MR, Siengchin S, Verpoort F, Alamry KA, Asiri AM (2020) Characterization of natural fibers from Cortaderia selloana Grass (Pampas) as reinforcement material for the production of the composites. J Nat Fibers 00:1–9. https://doi.org/10.1080/15440478.2019.1709110

    Article  CAS  Google Scholar 

  29. Kumar R, Hynes NRJ, Senthamaraikannan P, Saravanakumar S, Sanjay MR (2018) Physicochemical and thermal properties of Ceiba pentandra bark fiber. J Nat Fibers 15(6):822–829

    Article  CAS  Google Scholar 

  30. Khan A, Vijay R, Singaravelu DL, Sanjay MR, Siengchin S, Jawaid M, Alamry KA, Asiri AM (2020) Extraction and characterization of natural fibers from Citrullus lanatus Climber. J Nat Fibers 00:1–9. https://doi.org/10.1080/15440478.2020.1758281

    Article  CAS  Google Scholar 

  31. Vijay R, James Dhilip JD, Gowtham S, Harikrishnan S, Chandru B, Amarnath M, Khan A (2020) Characterization of natural cellulose fiber from the barks of Vachellia farnesiana. J Nat Fibers 00:1–10. https://doi.org/10.1080/15440478.2020.1764457

    Article  CAS  Google Scholar 

  32. Senthamaraikannan P, Sanjay MR, Bhat KS, Padmaraj NH, Jawaid M (2019) Characterization of natural cellulosic fiber from bark of Albizia amara. J Nat Fibers 16:1124–1131. https://doi.org/10.1080/15440478.2018.1453432

    Article  CAS  Google Scholar 

  33. Maheshwaran MV, Hyness NRJ, Senthamaraikannan P, Saravanakumar SS, Sanjay MR (2018) Characterization of natural cellulosic fiber from Epipremnum aureum stem. J Nat Fibers 15:789–798. https://doi.org/10.1080/15440478.2017.1364205

    Article  CAS  Google Scholar 

  34. Manimaran P, Sanjay MR, Senthamaraikannan P, Yogesha B, Barile C, Siengchin S (2020) A new study on characterization of Pithecellobium dulce fiber as composite reinforcement for light-weight applications. J Nat Fibers 17:359–370. https://doi.org/10.1080/15440478.2018.1492491

    Article  CAS  Google Scholar 

  35. Vijay R, Singaravelu DL, Vinod A, Sanjay MR, Siengchin S (2021) Characterization of alkali-treated and untreated natural fibers from the stem of Parthenium hysterophorus. J Nat Fibers 18:80–90. https://doi.org/10.1080/15440478.2019.1612308

    Article  CAS  Google Scholar 

  36. Bharath KN, Madhu P, Gowda TGY, Sanjay MR, Kushvaha V, Siengchin S (2020) Alkaline effect on characterization of discarded Waste of Moringa oleifera fiber as a potential eco-friendly reinforcement for biocomposites. J Polym Environ 28:2823–2836. https://doi.org/10.1007/s10924-020-01818-4

    Article  CAS  Google Scholar 

  37. Senthamaraikannan P, Kathiresan M (2018) Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis L. Carbohydr Polym 186:332–343. https://doi.org/10.1016/j.carbpol.2018.01.072

    Article  CAS  PubMed  Google Scholar 

  38. Rajeshkumar G (2020) Characterization of surface modified Phoenix sp. Fibers for composite reinforcement. J Nat Fibers 00:1–12. https://doi.org/10.1080/15440478.2019.1711284

    Article  CAS  Google Scholar 

  39. Senthilkumar K, Saba N, Chandrasekar M, Jawaid M, Rajini N, Siengchin S, Ayrilmis N, Mohammad F, Al-Lohedan HA (2021) Compressive, dynamic and thermo-mechanical properties of cellulosic pineapple leaf fibre/polyester composites: influence of alkali treatment on adhesion. Int J Adhes Adhes 106:102823. https://doi.org/10.1016/j.ijadhadh.2021.102823

    Article  CAS  Google Scholar 

  40. Kulandaivel N, Muralikannan R, KalyanaSundaram S (2020) Extraction and characterization of Novel Natural cellulosic fibers from pigeon pea plant. J Nat Fibers 17:769–779. https://doi.org/10.1080/15440478.2018.1534184

    Article  CAS  Google Scholar 

  41. Muthu Kumar ST, Yorseng K, Siengchin S, Ayrilmis N, Rajulu VA (2019) Mechanical and thermal properties of spent coffee bean filler/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites: effect of recycling, process saf. Environ Prot 124:187–195. https://doi.org/10.1016/j.psep.2019.02.008

    Article  CAS  Google Scholar 

  42. Md JS, Madhu S, Chakravarthy S, Siva Naga Raju (2020) Characterization of natural cellulose fibers from the stem of Albizia julibrissin as reinforcement for polymer composites. J Nat Fibers 00:1–14. https://doi.org/10.1080/15440478.2020.1807440

    Article  CAS  Google Scholar 

  43. Amutha K, Sudha A, Saravanan D (2020) Characterization of natural fibers extracted from banana inflorescence bracts. J Nat Fibers 00:1–10. https://doi.org/10.1080/15440478.2020.1764437

    Article  CAS  Google Scholar 

  44. Manimaran P, Pillai GP, Vignesh V, Prithiviraj M (2020) Characterization of natural cellulosic fibers from nendran banana peduncle plants. Int J Biol Macromol 162:1807–1815. https://doi.org/10.1016/j.ijbiomac.2020.08.111

    Article  CAS  PubMed  Google Scholar 

  45. Narayanasamy P, Balasundar P, Senthil S, Sanjay MR, Siengchin S, Khan A, Asiri AM (2020) Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites. Int J Biol Macromol 150:793–801

    Article  CAS  PubMed  Google Scholar 

  46. Mansour R, Abdelaziz A, Zohra AF (2018) Characterization of long lignocellulosic fibers extracted from Hyphaene thebaica L leaves. Res J Text Appar. https://doi.org/10.1108/RJTA-02-2018-0009

    Article  Google Scholar 

  47. Herlina Sari N, Wardana ING, Irawan YS, Siswanto E (2018) Characterization of the chemical, physical, and mechanical properties of NaOH-treated natural cellulosic fibers from corn husks. J Nat Fibers 15:545–558

    Article  CAS  Google Scholar 

  48. Vijay R, Singaravelu DL, Vinod A, Sanjay MR, Siengchin S, Jawaid M, Khan A, Parameswaranpillai J (2019) Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. Int J Biol Macromol 125:99–108

    Article  CAS  PubMed  Google Scholar 

  49. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol J Polym Process Inst 18:351–363

    Article  CAS  Google Scholar 

  50. Randriamanantena T, Razafindramisa FL, Ramanantsizehena G, Bernes A, Lacabane C (2009) Thermal behaviour of three woods of Madagascar by thermogravimetric analysis in inert atmosphere, in: Proc. Fourth High-Energy Phys. Int. Conf.,

  51. Mamleev V, Bourbigot S, Yvon J (2007) Kinetic analysis of the thermal decomposition of cellulose: the main step of mass loss. J Anal Appl Pyrolysis 80:151–165

    Article  CAS  Google Scholar 

  52. Pouriman M, Caparanga AR, Ebrahimi M, Dahresobh A (2018) Characterization of untreated and alkaline-treated salago fibers (genus Wikstroemia spp.). J Nat Fibers 15:296–307

    Article  CAS  Google Scholar 

  53. Obi Reddy K, Shukla M, Uma Maheswari C, Varada A, Rajulu (2012) Mechanical and physical characterization of sodium hydroxide treated Borassus fruit fibers. J For Res 23:667–674. https://doi.org/10.1007/s11676-012-0308-7

    Article  CAS  Google Scholar 

  54. Rojo E, Alonso MV, Oliet M, Saz-Orozco BD, Rodriguez F (2015) Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites. Compos Part B Eng 68:185–192. https://doi.org/10.1016/j.compositesb.2014.08.047

    Article  CAS  Google Scholar 

  55. Reddy KO, Reddy KRN, Zhang J, Zhang J, Varada A, Rajulu (2013) Effect of alkali treatment on the properties of century fiber. J Nat Fibers 10:282–296

    Article  CAS  Google Scholar 

  56. Reddy KO, Maheswari CU, Reddy DJP, Rajulu AV (2009) Thermal properties of Napier grass fibers. Mater Lett 63:2390–2392

    Article  CAS  Google Scholar 

  57. Rajulu AV, Rao GB, Rao BRP, Reddy AMS, He J, Zhang J (2002) Properties of ligno-cellulose fiber Hildegardia. J Appl Polym Sci 84:2216–2221

    Article  CAS  Google Scholar 

  58. Bharath KN, Madhu P, Gowda TGY, Sanjay MR, Kushvaha V, Siengchin S (2020) Alkaline effect on characterization of discarded waste of Moringa oleifera fiber as a potential eco-friendly reinforcement for biocomposites. J Polym Environ 28:2823–2836

    Article  CAS  Google Scholar 

  59. Asim M, Jawaid M, Abdan K, Ishak MR (2016) Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. J Bionic Eng 13:426–435

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the authorities of KARE, India KMUTNB, Thailand and Taif University, Saudi Arabia for their support in carrying out this research work. Taif University Researchers Supporting Project number (TURSP-2020/244), Taif University, Taif, Saudi Arabia.

Funding

Taif University Researchers Supporting Project number (TURSP-2020/244), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Senthil Muthu Kumar Thiagamani or Sanjay Mavinkere Rangappa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalingam, K., Thiagamani, S.M. ., Pulikkalparambil, H. et al. Novel Cellulosic Natural Fibers from Abelmoschus Ficulneus Weed: Extraction and Characterization for Potential Application in Polymer Composites. J Polym Environ 31, 1323–1334 (2023). https://doi.org/10.1007/s10924-022-02687-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02687-9

Keywords

Navigation