Skip to main content
Log in

Using Design-Expert to Optimize the Properties of a Polyethersulfone Ultrafiltration Membrane Through the Incorporation of NH2-MIL-53(Fe) and PVP for Maximum Cr(VI) Removal and Flux

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, an NH2-MIL-53(Fe) functionalized membrane was fabricated for Cr(VI) removal from contaminated groundwater. Design-Expert was employed to determine the optimum membrane structure in order to enhance selective adsorption rate and flux by investigating two factors of metal–organic framework (MOF: 0–5 wt%) and polyvinylpyrrolidone (PVP: 0.1–1 wt%). NH2-MIL-53(Fe) successfully synthesized was proved using FESEM, FTIR, EDS, and XRD analyses. NH2-MIL-53(Fe) functionalized membrane was prepared, and the properties were recognized using FESEM, EDS, EDX-mapping, and CA. According to these analyses, the synthesized MOF improved membrane properties such as hydrophilicity and porosity. Moreover, the MOF crystals were well immobilized in the polymer solution and uniformly distributed in the composite membrane. On the basis of the statistical results, PVP had a much more significant effect on adsorption percentage than MOF. In accordance with the Design-Expert result, the optimum structure of the MOF functionalized membrane containing 3.6 wt% of NH2-MIL-53(Fe) and 0.4 wt% of PVP exhibited a removal percentage of 87% and flux of 101 L m−2 h−1. Investigation of the effect of TDS did not indicate any interference with Cr(VI) adsorption by the adsorbent. Additionally, membrane repeatability and regeneration tests, used in five cycles, confirmed the membrane's long-term durability and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang Q, Cui Y, Qian G (2019) Goal-directed design of metal–organic frameworks for liquid-phase adsorption and separation. Coord Chem Rev 378:310–332. https://doi.org/10.1016/j.ccr.2017.10.028

    Article  CAS  Google Scholar 

  2. Joseph L, Jun BM, Flora JRV, Park CM, Yoon Y (2019) Removal of heavy metals from water sources in the developing world using low-cost materials: a review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.04.198

    Article  PubMed  Google Scholar 

  3. Kobielska PA, Howarth AJ, Farha OK, Nayak S (2018) Metal–organic frameworks for heavy metal removal from water. Coord Chem Rev 358:92–107. https://doi.org/10.1016/j.ccr.2017.12.010

    Article  CAS  Google Scholar 

  4. Yang A-M, Lo K, Zheng T-Z, Yang J-L, Bai Y-N, Feng Y-Q et al (2020) Environmental heavy metals and cardiovascular diseases: status and future direction. Chronic Dis Transl Med. https://doi.org/10.1016/j.cdtm.2020.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lal S, Singhal A, Kumari P (2020) Exploring carbonaceous nanomaterials for arsenic and chromium removal from wastewater. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2020.101276

    Article  Google Scholar 

  6. Yao Z, Du S, Zhang Y, Zhu B, Zhu L, John AE (2015) Positively charged membrane for removing low concentration Cr(VI) in ultrafiltration process. J Water Process Eng 8:99–107. https://doi.org/10.1016/j.jwpe.2015.08.005

    Article  Google Scholar 

  7. Fiyadh SS, AlSaadi MA, Jaafar WZ, AlOmar MK, Fayaed SS, Mohd NS et al (2019) Review on heavy metal adsorption processes by carbon nanotubes. J Clean Prod 230:783–793. https://doi.org/10.1016/j.jclepro.2019.05.154

    Article  CAS  Google Scholar 

  8. Abdullah N, Yusof N, Lau WJ, Jaafar J, Ismail AF (2019) Recent trends of heavy metal removal from water/wastewater by membrane technologies. J Ind Eng Chem 76:17–38. https://doi.org/10.1016/j.jiec.2019.03.029

    Article  CAS  Google Scholar 

  9. Tabatabaei S, Forouzesh Rad B, Baghdadi M (2020) Semicontinuous enhanced electroreduction of Cr(VI) in wastewater by cathode constructed of copper rods coated with palladium nanoparticles followed by adsorption. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126309

    Article  PubMed  Google Scholar 

  10. Hosseini SM, Alibakhshi H, Jashni E, Parvizian F, Shen JN, Taheri M et al (2020) A novel layer-by-layer heterogeneous cation exchange membrane for heavy metal ions removal from water. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.120884

    Article  PubMed  Google Scholar 

  11. Hargreaves AJ, Vale P, Whelan J, Alibardi L, Constantino C, Dotro G et al (2018) Impacts of coagulation-flocculation treatment on the size distribution and bioavailability of trace metals (Cu, Pb, Ni, Zn) in municipal wastewater. Water Res 128:120–128. https://doi.org/10.1016/j.watres.2017.10.050

    Article  CAS  PubMed  Google Scholar 

  12. des Ligneris E, Dumée LF, Kong L (2020) Nanofibers for heavy metal ion adsorption: correlating surface properties to adsorption performance, and strategies for ion selectivity and recovery. Environ Nanotechnol Monit Manag. https://doi.org/10.1016/j.enmm.2020.100297

    Article  Google Scholar 

  13. Najaflou S, Rad MF, Baghdadi M, Nabi Bidhendi GR (2021) Removal of Pb(II) from contaminated waters using cellulose sulfate/chitosan aerogel: equilibrium, kinetics, and thermodynamic studies. J Environ Manag. https://doi.org/10.1016/j.jenvman.2021.112167

    Article  Google Scholar 

  14. Peng W, Li H, Liu Y, Song S (2017) A review on heavy metal ions adsorption from water by graphene oxide and its composites. J Mol Liq 230:496–504. https://doi.org/10.1016/j.molliq.2017.01.064

    Article  CAS  Google Scholar 

  15. Feng T, Bavumiragira JP, Wambui MA, Kabtamu DM, László K, Wang Y et al (2020) Hierarchical porous induced competent removal of low concentration azo dye molecules by generating a leachy crystalline structure H-MIL-53(Fe). Chin Chem Lett. https://doi.org/10.1016/j.cclet.2020.04.044

    Article  Google Scholar 

  16. Nasir AM, Goh PS, Abdullah MS, Ng BC, Ismail AF (2019) Adsorptive nanocomposite membranes for heavy metal remediation: recent progresses and challenges. Chemosphere 232:96–112. https://doi.org/10.1016/j.chemosphere.2019.05.174

    Article  CAS  PubMed  Google Scholar 

  17. Arefi-Oskoui S, Khataee A, Jabbarvand Behrouz S, Vatanpour V, Haddadi Gharamaleki S, Orooji Y et al (2022) Development of MoS2/O-MWCNTs/PES blended membrane for efficient removal of dyes, antibiotic, and protein. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2021.119822

    Article  Google Scholar 

  18. Orooji Y, Han N, Nezafat Z, Shafiei N, Shen Z, Nasrollahzadeh M et al (2022) Valorisation of nuts biowaste: prospects in sustainable bio(nano)catalysts and environmental applications. J Clean Prod. https://doi.org/10.1016/j.jclepro.2022.131220

    Article  Google Scholar 

  19. Orooji Y, Nezafat Z, Nasrollahzadeh M, Shafiei N, Afsari M, Pakzad K et al (2022) Recent advances in nanomaterial development for lithium ion-sieving technologies. Desalination 529:115624. https://doi.org/10.1016/j.desal.2022.115624

    Article  CAS  Google Scholar 

  20. Keyikoglu R, Khataee A, Lin H, Orooji Y (2022) Vanadium (V)-doped ZnFe layered double hydroxide for enhanced sonocatalytic degradation of pymetrozine. Chem Eng J. https://doi.org/10.1016/j.cej.2022.134730

    Article  Google Scholar 

  21. Kumar P, Anand B, Tsang YF, Kim KH, Khullar S, Wang B (2019) Regeneration, degradation, and toxicity effect of MOFs: opportunities and challenges. Environ Res. https://doi.org/10.1016/j.envres.2019.05.019

    Article  PubMed  Google Scholar 

  22. Dutta R, Shrivastav R, Srivastava M, Verma A, Saxena S, Biswas NK et al (2022) MOFs in photoelectrochemical water splitting: new horizons and challenges. Int J Hydrogen Energy 47:5192–5210. https://doi.org/10.1016/j.ijhydene.2021.11.185

    Article  CAS  Google Scholar 

  23. Jiao L, Seow JYR, Skinner WS, Wang ZU, Jiang HL (2019) Metal–organic frameworks: structures and functional applications. Mater Today 27:43–68. https://doi.org/10.1016/j.mattod.2018.10.038

    Article  CAS  Google Scholar 

  24. Gu Y, Wang Y, Li H, Qin W, Zhang H, Wang G et al (2020) Fabrication of hierarchically porous NH2-MIL-53/wood-carbon hybrid membrane for highly effective and selective sequestration of Pb2+. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124141

    Article  Google Scholar 

  25. Dhaka S, Kumar R, Deep A, Kurade MB, Ji SW, Jeon BH (2019) Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord Chem Rev 380:330–352. https://doi.org/10.1016/j.ccr.2018.10.003

    Article  CAS  Google Scholar 

  26. Abdollahi N, Akbar Razavi SA, Morsali A, Hu ML (2020) High capacity Hg(II) and Pb(II) removal using MOF-based nanocomposite: cooperative effects of pore functionalization and surface-charge modulation. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121667

    Article  PubMed  Google Scholar 

  27. Huang L, He M, Chen B, Hu B (2018) Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere 199:435–444. https://doi.org/10.1016/j.chemosphere.2018.02.019

    Article  CAS  PubMed  Google Scholar 

  28. Yuan X, Ou J, Zhang P, Xu W, Jiang B, Tang K (2020) PEG-modified lipase immobilized onto NH2-MIL-53 MOF for efficient resolution of 4-fluoromandelic acid enantiomers. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.10.076

    Article  PubMed  Google Scholar 

  29. Jamshidifard S, Koushkbaghi S, Hosseini S, Rezaei S, Karamipour A, Jafarirad A et al (2019) Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. J Hazard Mater 368:10–20. https://doi.org/10.1016/j.jhazmat.2019.01.024

    Article  CAS  PubMed  Google Scholar 

  30. Sharma P, Shahi VK (2020) Assembly of MIL-101(Cr)-sulphonated poly(ether sulfone) membrane matrix for selective electrodialytic separation of Pb2+ from mono-/bi-valent ions. Chem Eng J. https://doi.org/10.1016/j.cej.2019.122688

    Article  Google Scholar 

  31. Yang W, Wang J, Yang Q, Pei H, Hu N, Suo Y et al (2018) Facile fabrication of robust MOF membranes on cloth via a CMC macromolecule bridge for highly efficient Pb(II) removal. Chem Eng J 339:230–239. https://doi.org/10.1016/j.cej.2018.01.126

    Article  CAS  Google Scholar 

  32. Li J, Wang H, Yuan X, Zhang J, Chew JW (2020) Metal-organic framework membranes for wastewater treatment and water regeneration. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2019.213116

    Article  Google Scholar 

  33. He M, Wang L, Lv Y, Wang X, Zhu J, Zhang Y et al (2020) Novel polydopamine/metal organic framework thin film nanocomposite forward osmosis membrane for salt rejection and heavy metal removal. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124452

    Article  Google Scholar 

  34. Zhou S, Gao J, Zhu J, Peng D, Zhang Y, Zhang Y (2020) Self-cleaning, antibacterial mixed matrix membranes enabled by photocatalyst Ti-MOFs for efficient dye removal. J Memb Sci. https://doi.org/10.1016/j.memsci.2020.118219

    Article  PubMed  Google Scholar 

  35. El-Shahat M, Abdelhamid AE, Abdelhameed RM (2020) Capture of iodide from wastewater by effective adsorptive membrane synthesized from MIL-125-NH2 and cross-linked chitosan. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115742

    Article  PubMed  Google Scholar 

  36. Zango ZU, Abu Bakar NHH, Sambudi NS, Jumbri K, Abdullah NAF, Kadir EA et al (2020) Adsorption of chrysene in aqueous solution onto MIL-88(Fe) and NH2-MIL-88(Fe) metal-organic frameworks: kinetics, isotherms, thermodynamics and docking simulation studies. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103544

    Article  Google Scholar 

  37. Du C, Wang Z, Liu G, Wang W, Yu D (2021) One-step electrospinning PVDF/PVP-TiO2 hydrophilic nanofiber membrane with strong oil-water separation and anti-fouling property. Colloids Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2021.126790

    Article  Google Scholar 

  38. Chen W, Xiao T, Yang X (2020) Facile pore structure control of poly(vinylidene fluoride) membrane for oil/water separation. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.117305

    Article  Google Scholar 

  39. Jabbarnia A, Khan WS, Ghazinezami A, Asmatulu R (2016) Investigating the thermal, mechanical, and electrochemical properties of PVdF/PVP nanofibrous membranes for supercapacitor applications. J Appl Polym Sci. https://doi.org/10.1002/app.43707

    Article  Google Scholar 

  40. Mavukkandy MO, Zaib Q, Arafat HA (2018) CNT/PVP blend PVDF membranes for the removal of organic pollutants from simulated treated wastewater effluent. J Environ Chem Eng 6:6733–6740. https://doi.org/10.1016/j.jece.2018.10.029

    Article  CAS  Google Scholar 

  41. Lee CG, Javed H, Zhang D, Kim JH, Westerhoff P, Li Q et al (2018) Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants. Environ Sci Technol 52:4285–4293. https://doi.org/10.1021/acs.est.7b06508

    Article  CAS  PubMed  Google Scholar 

  42. Wu X, Yang X, Yang H, Guo Z, Lin J, Wu W et al (2019) Hierarchically structured PVP porous fibers derived from the embedding of NaY zeolite synergize the adsorption of benzene. Compos B. https://doi.org/10.1016/j.compositesb.2019.107542

    Article  Google Scholar 

  43. Badoei-dalfard A, Shahba A, Zaare F, Sargazi G, Seyedalipour B, Karami Z (2021) Lipase immobilization on a novel class of Zr-MOF/electrospun nanofibrous polymers: biochemical characterization and efficient biodiesel production. Int J Biol Macromol 192:1292–1303. https://doi.org/10.1016/j.ijbiomac.2021.10.106

    Article  CAS  PubMed  Google Scholar 

  44. Yao A, Hua D, Zhao F, Zheng D, Pan J, Hong Y et al (2021) Integration of P84 and porphyrin-based 2D MOFs (M-TCPP, M= Zn, Cu Co, Ni) for mixed matrix membranes towards enhanced performance in organic solvent nanofiltration. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2021.120022

    Article  Google Scholar 

  45. Xiao S, Huo X, Fan S, Zhao K, Yu S, Tan X (2021) Design and synthesis of Al-MOF/PPSU mixed matrix membrane with pollution resistance. Chin J Chem Eng 29:110–120. https://doi.org/10.1016/j.cjche.2020.05.030

    Article  CAS  Google Scholar 

  46. Nguyen TP, Yang SH (2018) Hybrid materials based on polymer nanocomposites for environmental applications. Woodhead Publishing, Sawston. https://doi.org/10.1016/B978-0-08-102262-7.00019-2

    Book  Google Scholar 

  47. Taherian Z, Shahed Gharahshiran V, Khataee A, Orooji Y (2022) Synergistic effect of freeze-drying and promoters on the catalytic performance of Ni/MgAl layered double hydroxide. Fuel. https://doi.org/10.1016/j.fuel.2021.122620

    Article  Google Scholar 

  48. Sohrabi H, Majidi MR, Arbabzadeh O, Khaaki P, Pourmohammad S, Khataee A et al (2022) Recent advances in the highly sensitive determination of zearalenone residues in water and environmental resources with electrochemical biosensors. Environ Res. https://doi.org/10.1016/j.envres.2021.112082

    Article  PubMed  Google Scholar 

  49. Taherian Z, Khataee A, Han N, Orooji Y (2022) Hydrogen production through methane reforming processes using promoted-Ni/mesoporous silica: a review. J Ind Eng Chem 107:20–30. https://doi.org/10.1016/j.jiec.2021.12.006

    Article  CAS  Google Scholar 

  50. Ansarian Z, Khataee A, Arefi-Oskoui S, Orooji Y, Lin H (2022) Ultrasound-assisted catalytic activation of peroxydisulfate on Ti3GeC2 MAX phase for efficient removal of hazardous pollutants. Mater Today Chem 24:100818. https://doi.org/10.1016/j.mtchem.2022.100818

    Article  CAS  Google Scholar 

  51. Liang R, Shen L, Jing F, Qin N, Wu L (2015) Preparation of MIL-53(Fe)-reduced graphene oxide nanocomposites by a simple self-assembly strategy for increasing interfacial contact: efficient visible-light photocatalysts. ACS Appl Mater Interfaces 7:9507–9515. https://doi.org/10.1021/acsami.5b00682

    Article  CAS  PubMed  Google Scholar 

  52. Ahmad T, Guria C, Mandal A (2020) Kinetic modeling and simulation of non-solvent induced phase separation: immersion precipitation of PVC-based casting solution in a finite salt coagulation bath. Polymer (Guildf). https://doi.org/10.1016/j.polymer.2020.122527

    Article  Google Scholar 

  53. van Lente JJ, Irshad Baig M, de Vos WM, Lindhoud S (2022) Biocatalytic membranes through aqueous phase separation. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2022.02.094

    Article  PubMed  Google Scholar 

  54. Durmaz EN, Willott JD, Fatima A, de Vos WM (2020) Weak polyanion and strong polycation complex based membranes: linking aqueous phase separation to traditional membrane fabrication. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2020.110015

    Article  Google Scholar 

  55. Li C, Yang Q, Liu D, Nie H, Liu Y (2021) Removal of organic phosphonate HEDP by Eu-MOF/GO composite membrane. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.106895

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sadeghian S, Pourfakhar H, Baghdadi M, Aminzadeh B (2021) Application of sand particles modified with NH2-MIL-101(Fe) as an efficient visible-light photocatalyst for Cr(VI) reduction. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.129365

    Article  PubMed  Google Scholar 

  57. Wang L, Zhang C, Gao F, Mailhot G, Pan G (2017) Algae decorated TiO 2 /Ag hybrid nanofiber membrane with enhanced photocatalytic activity for Cr(VI) removal under visible light. Chem Eng J 314:622–630. https://doi.org/10.1016/j.cej.2016.12.020

    Article  CAS  Google Scholar 

  58. Babapour M, Hadi Dehghani M, Alimohammadi M, Moghadam Arjmand M, Salari M, Rasuli L et al (2022) Adsorption of Cr(VI) from aqueous solution using mesoporous metal-organic framework-5 functionalized with the amino acids: characterization, optimization, linear and nonlinear kinetic models. J Mol Liq. https://doi.org/10.1016/j.molliq.2021.117835

    Article  Google Scholar 

  59. Ashtiani S, Khoshnamvand M, Bouša D, Šturala J, Sofer Z, Shaliutina-Kolešová A et al (2021) Surface and interface engineering in CO2-philic based UiO-66-NH2-PEI mixed matrix membranes via covalently bridging PVP for effective hydrogen purification. Int J Hydrogen Energy 46:5449–5458. https://doi.org/10.1016/j.ijhydene.2020.11.081

    Article  CAS  Google Scholar 

  60. Marbelia L, Bilad MR, Vankelecom IFJ (2019) Gradual PVP leaching from PVDF/PVP blend membranes and its effects on membrane fouling in membrane bioreactors. Sep Purif Technol 213:276–282. https://doi.org/10.1016/j.seppur.2018.12.045

    Article  CAS  Google Scholar 

  61. Vinu M, Pal S, Chen JD, Lin YF, Lai YL, Lee CS et al (2019) Microporous 3D aluminum MOF doped into chitosan-based mixed matrix membranes for ethanol/water separation. J Chin Chem Soc 66:1165–1171. https://doi.org/10.1002/jccs.201900172

    Article  CAS  Google Scholar 

  62. Vinu M, Senthil Raja D, Jiang YC, Liu TY, Xie YY, Lin YF et al (2018) Effects of structural crystallinity and defects in microporous Al-MOF filled chitosan mixed matrix membranes for pervaporation of water/ethanol mixtures. J Taiwan Inst Chem Eng 83:143–151. https://doi.org/10.1016/j.jtice.2017.11.007

    Article  CAS  Google Scholar 

  63. Wu G, Jiang M, Zhang T, Jia Z (2016) Tunable pervaporation performance of modified MIL-53(Al)-NH2/Poly(vinyl alcohol) mixed matrix membranes. J Membr Sci 507:72–80. https://doi.org/10.1016/j.memsci.2016.01.048

    Article  CAS  Google Scholar 

  64. Zhao S, Wang Z, Wei X, Tian X, Wang J, Yang S et al (2011) Comparison study of the effect of PVP and PANI nanofibers additives on membrane formation mechanism, structure and performance. J Membr Sci 385–386:110–122. https://doi.org/10.1016/j.memsci.2011.09.029

    Article  CAS  Google Scholar 

  65. Bajpai S, Gupta SK, Dey A, Jha MK, Bajpai V, Joshi S et al (2012) Application of central composite design approach for removal of chromium (VI) from aqueous solution using weakly anionic resin: modeling, optimization, and study of interactive variables. J Hazard Mater 227–228:436–444. https://doi.org/10.1016/j.jhazmat.2012.05.016

    Article  CAS  PubMed  Google Scholar 

  66. Yang Y, Xiong Z, Wang Z, Liu Y, He Z, Cao A et al (2021) Super-adsorptive and photo-regenerable carbon nanotube based membrane for highly efficient water purification. J Membr Sci. https://doi.org/10.1016/j.memsci.2020.119000

    Article  Google Scholar 

  67. Dai F, Wang Y, Zhou X, Zhao R, Han J, Wang L (2020) ZnIn2S4 decorated Co-doped NH2-MIL-53(Fe) nanocomposites for efficient photocatalytic hydrogen production. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.146161

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shi L, Wang T, Zhang H, Chang K, Meng X, Liu H et al (2015) An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Adv Sci. https://doi.org/10.1002/advs.201500006

    Article  Google Scholar 

  69. Jia Z, Jiang M, Wu G (2017) Amino-MIL-53(Al) sandwich-structure membranes for adsorption of p-nitrophenol from aqueous solutions. Chem Eng J 307:283–290. https://doi.org/10.1016/j.cej.2016.08.090

    Article  CAS  Google Scholar 

  70. Gao Y, Li S, Li Y, Yao L, Zhang H (2017) Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Appl Catal B 202:165–174. https://doi.org/10.1016/j.apcatb.2016.09.005

    Article  CAS  Google Scholar 

  71. Hosseinkhani A, Forouzesh Rad B, Baghdadi M (2020) Efficient removal of hexavalent chromium from electroplating wastewater using polypyrrole coated on cellulose sulfate fibers. J Environ Manag. https://doi.org/10.1016/j.jenvman.2020.111153

    Article  Google Scholar 

  72. Zhang HZ, Sun JY, Zhang ZL, Xu ZL (2021) Hybridly charged NF membranes with MOF incorporated for removing low-concentration surfactants. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.118069

    Article  Google Scholar 

  73. Arthanareeswaran G, Thanikaivelan P, Jaya N, Mohan D, Raajenthiren M (2007) Removal of chromium from aqueous solution using cellulose acetate and sulfonated poly(ether ether ketone) blend ultrafiltration membranes. J Hazard Mater 139:44–49. https://doi.org/10.1016/j.jhazmat.2006.06.006

    Article  CAS  PubMed  Google Scholar 

  74. Doke SM, Yadav GD (2014) Process efficacy and novelty of titania membrane prepared by polymeric sol-gel method in removal of chromium(VI) by surfactant enhanced microfiltration. Chem Eng J 255:483–491. https://doi.org/10.1016/j.cej.2014.05.098

    Article  CAS  Google Scholar 

  75. Ren X, Zhao C, Du S, Wang T, Luan Z, Wang J et al (2010) Fabrication of asymmetric poly (m-phenylene isophthalamide) nanofiltration membrane for chromium(VI) removal. J Environ Sci 22:1335–1341. https://doi.org/10.1016/S1001-0742(09)60259-X

    Article  CAS  Google Scholar 

  76. Jayalakshmi A, Rajesh S, Senthilkumar S, Mohan D (2012) Epoxy functionalized poly(ether-sulfone) incorporated cellulose acetate ultrafiltration membrane for the removal of chromium ions. Sep Purif Technol 90:120–132. https://doi.org/10.1016/j.seppur.2012.02.010

    Article  CAS  Google Scholar 

  77. Pishnamazi M, Koushkbaghi S, Hosseini SS, Darabi M, Yousefi A, Irani M (2020) Metal organic framework nanoparticles loaded- PVDF/chitosan nanofibrous ultrafiltration membranes for the removal of BSA protein and Cr(VI) ions. J Mol Liq. https://doi.org/10.1016/j.molliq.2020.113934

    Article  PubMed  PubMed Central  Google Scholar 

  78. Koushkbaghi S, Zakialamdari A, Pishnamazi M, Ramandi HF, Aliabadi M, Irani M (2018) Aminated-Fe3O4 nanoparticles filled chitosan/PVA/PES dual layers nanofibrous membrane for the removal of Cr(VI) and Pb(II) ions from aqueous solutions in adsorption and membrane processes. Chem Eng J 337:169–182. https://doi.org/10.1016/j.cej.2017.12.075

    Article  CAS  Google Scholar 

  79. Habibi S, Nematollahzadeh A, Mousavi SA (2015) Nano-scale modification of polysulfone membrane matrix and the surface for the separation of chromium ions from water. Chem Eng J 267:306–316. https://doi.org/10.1016/j.cej.2015.01.047

    Article  CAS  Google Scholar 

  80. Madden J, Srinivasan K, Pohl C, Shirakawa N (2011) Hexavalent chromium determination by two-dimensional capillary ion chromatography using a monolith concentrator column. Thermo Fisher Scientific, Sunnyvale. https://doi.org/LPN2962-01

  81. Wade LG, Simek JW (2017) Organic chemistry, 9th edn. Pearson, Glenview, IL

    Google Scholar 

  82. Al Obeidli A, Ben Salah H, Al Murisi M, Sabouni R (2022) Recent advancements in MOFs synthesis and their green applications. Int J Hydrogen Energy 47:2561–2593. https://doi.org/10.1016/j.ijhydene.2021.10.180

    Article  CAS  Google Scholar 

  83. Kadhom M, Deng B (2018) Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications. Appl Mater Today 11:219–230. https://doi.org/10.1016/j.apmt.2018.02.008

    Article  Google Scholar 

  84. Xu X, Nikolaeva D, Hartanto Y, Luis P (2022) MOF-based membranes for pervaporation. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2021.119233

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the School of Environment, College of Engineering, University of Tehran, Tehran, Iran.

Funding

Funding was provided by University of Tehran.

Author information

Authors and Affiliations

Authors

Contributions

BFR: conception and design of the work, conceptualization, formal analysis, methodology, validation, investigation, resources, writing-original draft, writing-review & editing, project administration. HM: formal analysis, resources. MFR: conceptualization, methodology, formal analysis, investigation, writing-original draft, writing-review & editing. MB: conceptualization, methodology, validation, formal analysis, investigation, resources, writing-original draft, writing- review & editing, supervision, project administration, approved the version to be published.

Corresponding author

Correspondence to Majid Baghdadi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 925 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forouzesh Rad, B., Mahdavi, H., Forouzesh Rad, M. et al. Using Design-Expert to Optimize the Properties of a Polyethersulfone Ultrafiltration Membrane Through the Incorporation of NH2-MIL-53(Fe) and PVP for Maximum Cr(VI) Removal and Flux. J Polym Environ 30, 3875–3889 (2022). https://doi.org/10.1007/s10924-022-02477-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02477-3

Keywords

Navigation