Skip to main content
Log in

Starch-Based Materials Encapsulating Anthocyanins: A Review

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Anthocyanins (ACNs) are natural pigments broadly used in the food industry due to their color, antioxidant, and antimicrobial properties, however, these pigments are degraded when exposed to high temperatures, light, oxygen, and alkaline conditions. Encapsulation of ACNs using native starches, modified starches, and their derivatives such as maltodextrins and starch nanoparticles is an alternative to increase the stability of these natural pigments. Thus, this review aims to comprehensively analyze the state of the art regarding the encapsulation of ACNs with native starches, modified starches, and their derivatives, with a special interest in the ACNs properties, 3 the main chemical treatments used to modify starches to be applied as encapsulants of ACNs, the main encapsulation techniques of ACNs using starches and derivatives, and the potential applications of these materials as active ingredients and colorants of food products, as well as additives to manufacture intelligent food packaging. ACNs can be encapsulated using starches, modified starches, and derivatives as wall materials by spray and freeze drying, the resulting materials have high encapsulating efficiency (> 80%). Particularly, maltodextrins are the main material used as encapsulants of ACNs. It is expected that the current review can reveal the fundamental aspects that should be considered for the encapsulation of ACNs with native starches, modified starches, and their derivatives, encouraging their use by the food industry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

Abbreviations

ACNs:

Anthocyanins

CMC:

Carboxymethylated starch

DS:

Degree of substitution

EE:

Encapsulation efficiency

FD:

Freeze drying

FDA:

Food and Drug Administration

HES:

Hydroxyethylation

HPS:

Hydroxypropyl starch derivatives

MAD:

Microwave assisted drying

MD-SPI:

Maltodextrin-soy protein isolate

PVA:

Polyvinyl alcohol

OSA:

Octenyl succinic anhydride

SD:

Spray drying

SNPs:

Starch nanoparticles

References

  1. Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61:1–21. https://doi.org/10.1080/16546628.2017.1361779

    Article  CAS  Google Scholar 

  2. Chen JY, Du J, Li ML, Li CM (2020) Degradation kinetics and pathways of red raspberry anthocyanins in model and juice systems and their correlation with color and antioxidant changes during storage. LWT Food Sci Technol 128:109448. https://doi.org/10.1016/j.lwt.2020.109448

    Article  CAS  Google Scholar 

  3. Lee YM, Yoon Y, Yoon H, Park HM, Song S, Yeum KJ (2017) Dietary anthocyanins against obesity and inflammation. Nutrients 9:1–15. https://doi.org/10.3390/nu9101089

    Article  CAS  Google Scholar 

  4. Ma Y, Ding S, Fei Y, Liu G, Jang H, Fang J (2019) Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella. Food Control 106:106712. https://doi.org/10.1016/j.foodcont.2019.106712

    Article  CAS  Google Scholar 

  5. Merz B, Capello C, Leandro GC, Moritz DE, Monteiro AR, Valencia GA (2020) A novel colorimetric indicator film based on chitosan, polyvinyl alcohol and anthocyanins from jambolan (Syzygium cumini) fruit for monitoring shrimp freshness. Int J Biol Macromol 153:625–632. https://doi.org/10.1016/j.ijbiomac.2020.03.048

    Article  CAS  PubMed  Google Scholar 

  6. Gaviria YAR, Palencia NSN, Capello C, Trevisol TC, Monteiro AR, Valencia GA (2021) Nanostructured pH-indicator films based on cassava starch, laponite, and jambolan (Syzygium cumini) fruit manufactured by thermo-compression. Starch/Stärke 2000208:1–11. https://doi.org/10.1002/star.202000208

    Article  CAS  Google Scholar 

  7. Capello C, Trevisol TC, Pelicioli J, Terrazas MB, Monteiro AR, Valencia GA (2021) Preparation and characterization of colorimetric indicator films based on chitosan/polyvinyl alcohol and anthocyanins from agri-food wastes. J Polym Environ. https://doi.org/10.1007/s10924-020-01978-3

    Article  Google Scholar 

  8. Halász K, Csóka L (2018) Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application. Food Packag Shelf Life 16:185–193. https://doi.org/10.1016/j.fpsl.2018.03.002

    Article  Google Scholar 

  9. Andretta R, Luchese CL, Tessaro IC, Spada JC (2019) Development and characterization of pH-indicator films based on cassava starch and blueberry residue by thermocompression. Food Hydrocoll 93:317–324. https://doi.org/10.1016/j.foodhyd.2019.02.019

    Article  CAS  Google Scholar 

  10. Todaro A, Cimino F, Rapisarda P, Catalano AE, Barbagallo RN, Spagna G (2009) Recovery of anthocyanins from eggplant peel. Food Chem 114:434–439. https://doi.org/10.1016/j.foodchem.2008.09.102

    Article  CAS  Google Scholar 

  11. Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B (2011) An overview of encapsulation technologies for food applications. Procedia Food Sci 1:1806–1815. https://doi.org/10.1016/j.profoo.2011.09.265

    Article  CAS  Google Scholar 

  12. Patel AS, Kar A, Mohapatra D (2020) Development of microencapsulated anthocyanin-rich powder using soy protein isolate, jackfruit seed starch and an emulsifier (NBRE-15) as encapsulating materials. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-67191-3

    Article  CAS  Google Scholar 

  13. Valencia GA, Sobral PJA (2018) Recent trends on nano-biocomposite polymers for food packaging. In: Gutiérrez TJ (ed) Polymers for food applications, 1st edn. Springer, Gewerbestrasse, pp 101–130

    Chapter  Google Scholar 

  14. Escobar-Puentes AA, García-Gurrola A, Rincón S, Zepeda A, Martínez-Bustos F (2020) Effect of amylose/amylopectin content and succinylation on properties of corn starch nanoparticles as encapsulants of anthocyanins. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116972

    Article  PubMed  Google Scholar 

  15. Lin X, Li S, Yin J, Chang F, Wang C, He X, Huang Q, Zhang B (2020) Anthocyanin-loaded double Pickering emulsion stabilized by octenylsuccinate quinoa starch: preparation, stability and in vitro gastrointestinal digestion. Int J Biol Macromol 152:1233–1241. https://doi.org/10.1016/j.ijbiomac.2019.10.220

    Article  CAS  PubMed  Google Scholar 

  16. Mehran M, Masoum S, Memarzadeh M (2020) Improvement of thermal stability and antioxidant activity of anthocyanins of Echium amoenum petal using maltodextrin/modified starch combination as wall material. Int J Biol Macromol 148:768–776. https://doi.org/10.1016/j.ijbiomac.2020.01.197

    Article  CAS  PubMed  Google Scholar 

  17. Hanafy NAN (2021) Starch based hydrogel NPs loaded by anthocyanins might treat glycogen storage at cardiomyopathy in animal fibrotic model. Int J Biol Macromol 183:171–181. https://doi.org/10.1016/j.ijbiomac.2021.04.131

    Article  CAS  PubMed  Google Scholar 

  18. Ji Y (2021) Synthesis of porous starch microgels for the encapsulation, delivery and stabilization of anthocyanins. J Food Eng 302:110552. https://doi.org/10.1016/j.jfoodeng.2021.110552

    Article  CAS  Google Scholar 

  19. Tarone AG, Cazarin CBB, Marostica MR Jr (2020) Anthocyanins: new techniques and challenges in microencapsulation. Food Res Int 133:109092. https://doi.org/10.1016/j.foodres.2020.109092

    Article  CAS  PubMed  Google Scholar 

  20. Tena N, Martín J, Asuero AG (2020) State of the art of anthocyanins: antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 9:451. https://doi.org/10.3390/antiox9050451

    Article  CAS  PubMed Central  Google Scholar 

  21. Castañeda-Ovando A, de Pacheco-Hernández ML, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871. https://doi.org/10.1016/j.foodchem.2008.09.001

    Article  CAS  Google Scholar 

  22. Celli GB, Tan C, Selig MJ (2018) Anthocyanidins and anthocyanins. Elsevier, Amsterdam

    Google Scholar 

  23. Cai D, Li X, Chen J, Jiang X, Ma X, Sun J, Tian L, Vidyarthi SK, Xu J, Pan Z, Bai W (2022) A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chem 366:130611. https://doi.org/10.1016/j.foodchem.2021.130611

    Article  CAS  PubMed  Google Scholar 

  24. He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187. https://doi.org/10.1146/annurev.food.080708.100754

    Article  CAS  PubMed  Google Scholar 

  25. Li D, Wang P, Luo Y, Zhao M, Chen F (2017) Health benefits of anthocyanins and molecular mechanisms: update from recent decade. Crit Rev Food Sci Nutr 57:1729–1741. https://doi.org/10.1080/10408398.2015.1030064

    Article  CAS  PubMed  Google Scholar 

  26. Arruda HS, Silva EK, Araujo NMP, Pereira GA, Pastore GM, Junior MRM (2021) Anthocyanins recovered from agri-food by-products using innovative processes: trends, challenges, and perspectives for their application in food systems. Molecules 26:2632. https://doi.org/10.3390/molecules26092632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodriguez-Amaya DB (2019) Update on natural food pigments: a mini-review on carotenoids, anthocyanins, and betalains. Food Res Int 124:200–205. https://doi.org/10.1016/j.foodres.2018.05.028

    Article  CAS  PubMed  Google Scholar 

  28. Santos-Buelga C, Gonzáles-Paramás AM (2018) Anthocyanins. In: Smithers G (ed) Reference module in food science. Elsevier, Amsterdam, pp 1–12

    Google Scholar 

  29. Trouillas P, Sancho-García JC, De Freitas V, Gierschner J, Otyepka M, Dangles O (2016) Stabilizing and modulating color by copigmentation: insights from theory and experiment. Chem Rev 116:4937–4982. https://doi.org/10.1021/acs.chemrev.5b00507

    Article  CAS  PubMed  Google Scholar 

  30. Oancea S (2021) A review of the current knowledge of thermal stability of anthocyanins and approaches to their stabilization to heat. Antioxidants 10:1–23

    Article  Google Scholar 

  31. Sun J, Bai W, Zhang Y, Liao X, Hu X (2011) Identification of degradation pathways and products of cyanidin-3- sophoroside exposed to pulsed electric field. Food Chem 126:1203–1210. https://doi.org/10.1016/j.foodchem.2010.12.002

    Article  CAS  Google Scholar 

  32. Manzoor M, Singh J, Gani A, Noor N (2021) Valorization of natural colors as health-promoting bioactive compounds: phytochemical profile, extraction techniques, and pharmacological perspectives. Food Chem 362:130141. https://doi.org/10.1016/j.foodchem.2021.130141

    Article  CAS  PubMed  Google Scholar 

  33. Cavalcanti RN, Santos DT, Meireles MAA (2011) Non-thermal stabilization mechanisms of anthocyanins in model and food systems: an overview. Food Res Int 44:499–509. https://doi.org/10.1016/j.foodres.2010.12.007

    Article  CAS  Google Scholar 

  34. Ioannou I, Hafsa I, Hamdi S, Charbonnel C, Ghoul M (2012) Review of the effects of food processing and formulation on flavonol and anthocyanin behaviour. J Food Eng 111:208–217. https://doi.org/10.1016/j.jfoodeng.2012.02.006

    Article  CAS  Google Scholar 

  35. Panja P (2018) Green extraction methods of food polyphenols from vegetable materials. Curr Opin Food Sci 23:173–182. https://doi.org/10.1016/j.cofs.2017.11.012

    Article  Google Scholar 

  36. Sridhar K, Charles AL (2021) Grape skin extracts as a sustainable source of antioxidants in an oil-in-water emulsion: an alternate natural approach to synthetic antioxidants using principal component analysis. Int J Food Sci Technol 56:1937–1945. https://doi.org/10.1111/ijfs.14825

    Article  CAS  Google Scholar 

  37. Kalušević AM, Lević SM, Čalija BR, Milić JR, Pavlović VB, Bugarski BM, Nedović VA (2017) Effects of different carrier materials on physicochemical properties of microencapsulated grape skin extract. J Food Sci Technol 54:3411–3420. https://doi.org/10.1007/s13197-017-2790-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gaviria YAR, Palencia NSN, Capello C, Trevisol TC, Monteiro AR, Valencia GA (2021) Nanostructured pH-indicator films based on cassava starch, laponite, and jambolan (Syzygium cumini) fruit manufactured by thermo-compression. Starch - Stärke 2000208:1–11. https://doi.org/10.1002/star.202000208

    Article  CAS  Google Scholar 

  39. Capello C, Leandro GC, Gagliardi TR, Valencia GA (2021) Intelligent films from chitosan and biohybrids based on anthocyanins and laponite®: physicochemical properties and food packaging applications. J Polym Environ. https://doi.org/10.1007/s10924-021-02168-5

    Article  Google Scholar 

  40. Becerril R, Nerín C, Silva F (2021) Bring some colour to your package: freshness indicators based on anthocyanin extracts. Trends Food Sci Technol 111:495–505. https://doi.org/10.1016/j.tifs.2021.02.042

    Article  CAS  Google Scholar 

  41. Gonçalves AC, Nunes AR, Falcão A, Alves G, Silva LR (2021) Dietary effects of anthocyanins in human health: a comprehensive review. Pharmaceuticals 14:690. https://doi.org/10.3390/ph14070690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Calderón-Castro A, Jacobo-Valenzuela N, Félix-Salazar LA, de Zazueta-Morales JJ, Martínez-Bustos F, Fitch-Vargas PR, Carrillo-López A, Aguilar-Palazuelos E (2019) Optimization of corn starch acetylation and succinylation using the extrusion process. J Food Sci Technol 56:3940–3950. https://doi.org/10.1007/s13197-019-03863-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Colussi R, Pinto VZ, El-Halal SLM, Biduski B, Prietto L, Castilhos DD, da Zavareze ER, Dias ARG (2017) Acetylated rice starches films with different levels of amylose: mechanical, water vapor barrier, thermal, and biodegradability properties. Food Chem 221:1614–1620. https://doi.org/10.1016/j.foodchem.2016.10.129

    Article  CAS  PubMed  Google Scholar 

  44. Tang H, Qu Y, Li Y, Dong S (2018) Surface modification mechanism of cross-linking and acetylation, and their influence on characteristics of high amylose corn starch. J Food Sci 83:1533–1541. https://doi.org/10.1111/1750-3841.14161

    Article  CAS  PubMed  Google Scholar 

  45. Olagunju AI, Omoba OS, Enujiugha VN, Wiens RA, Gough KM, Aluko RE (2020) Influence of acetylation on physicochemical and morphological characteristics of pigeon pea starch. Food Hydrocoll 100:105424. https://doi.org/10.1016/j.foodhyd.2019.105424

    Article  CAS  Google Scholar 

  46. Mahmoudi Najafi SH, Baghaie M, Ashori A (2016) Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model. Int J Biol Macromol 87:48–54. https://doi.org/10.1016/j.ijbiomac.2016.02.030

    Article  CAS  PubMed  Google Scholar 

  47. Cuenca P, Ferrero S, Albani O (2020) Preparation and characterization of cassava starch acetate with high substitution degree. Food Hydrocoll 100:105430. https://doi.org/10.1016/j.foodhyd.2019.105430

    Article  CAS  Google Scholar 

  48. González-Soto RA, Núñez-Santiago MC, Bello-Pérez LA (2019) Preparation and partial characterization of films made with dual-modified (acetylation and crosslinking) potato starch. J Sci Food Agric 99:3134–3141. https://doi.org/10.1002/jsfa.9528

    Article  CAS  PubMed  Google Scholar 

  49. Mehboob S, Ali TM, Sheikh M, Hasnain A (2020) Effects of cross linking and/or acetylation on sorghum starch and film characteristics. Int J Biol Macromol 155:786–794. https://doi.org/10.1016/j.ijbiomac.2020.03.144

    Article  CAS  PubMed  Google Scholar 

  50. Rahman S, Mahendradatta TABM (2017) The chemical contents of the starch of palado seed (Aglaia sp) with pregelatinization, cross-linking, and acetylation modifications. Int J Sci 32:305–316

    Google Scholar 

  51. Olatunde GO, Arogundade LK, Orija OI (2017) Chemical, functional and pasting properties of banana and plantain starches modified by pre-gelatinization, oxidation and acetylation. Cogent Food Agric 3:1283079. https://doi.org/10.1080/23311932.2017.1283079

    Article  CAS  Google Scholar 

  52. Rincón-Aguirre A, Bello Pérez LA, Mendoza S, del Real A, Rodríguez-García ME (2018) Physicochemical studies of taro starch chemically modified by acetylation, phosphorylation, and succinylation. Starch/Staerke 70:1–9. https://doi.org/10.1002/star.201700066

    Article  CAS  Google Scholar 

  53. Shaikh M, Haider S, Ali TM, Hasnain A (2019) Physical, thermal, mechanical and barrier properties of pearl millet starch films as affected by levels of acetylation and hydroxypropylation. Int J Biol Macromol 124:209–219. https://doi.org/10.1016/j.ijbiomac.2018.11.135

    Article  CAS  PubMed  Google Scholar 

  54. Kemas CU, Ngwuluka NC, Ochekpe NA, Nep EI (2017) Starch-based xerogels: effect of acetylation on physicochemical and rheological properties. Int J Biol Macromol 98:94–102. https://doi.org/10.1016/j.ijbiomac.2017.01.101

    Article  CAS  PubMed  Google Scholar 

  55. Bhosale R, Singhal R (2007) Effect of octenylsuccinylation on physicochemical and functional properties of waxy maize and amaranth starches. Carbohydr Polym 68:447–456. https://doi.org/10.1016/j.carbpol.2006.11.011

    Article  CAS  Google Scholar 

  56. Altuna L, Herrera ML, Foresti ML (2018) Synthesis and characterization of octenyl succinic anhydride modified starches for food applications. A review of recent literature. Food Hydrocoll 80:97–110. https://doi.org/10.1016/j.foodhyd.2018.01.032

    Article  CAS  Google Scholar 

  57. Bajaj R, Singh N, Kaur A (2019) Properties of octenyl succinic anhydride (OSA) modified starches and their application in low fat mayonnaise. Int J Biol Macromol 131:147–157. https://doi.org/10.1016/j.ijbiomac.2019.03.054

    Article  CAS  PubMed  Google Scholar 

  58. Masina N, Choonara YE, Kumar P, du Toit LC, Govender M, Indermun S, Pillay V (2017) A review of the chemical modification techniques of starch. Carbohydr Polym 157:1226–1236. https://doi.org/10.1016/j.carbpol.2016.09.094

    Article  CAS  PubMed  Google Scholar 

  59. Massicotte LP, Baille WE, Mateescu MA (2008) Carboxylated high amylose starch as pharmaceutical excipients. Structural insights and formulation of pancreatic enzymes. Int J Pharm 356:212–223. https://doi.org/10.1016/j.ijpharm.2008.01.039

    Article  CAS  PubMed  Google Scholar 

  60. Chen YX, Wang GY (2006) Adsorption properties of oxidized carboxymethyl starch and cross-linked carboxymethyl starch for calcium ion. Coll Surf A 289:75–83. https://doi.org/10.1016/j.colsurfa.2006.04.008

    Article  CAS  Google Scholar 

  61. Kan L, Zhao Q, Hu J, Wu Y, Ouyang J (2017) Synthesis and physicochemical properties of carboxymethyl chestnut starch. J Food Process Preserv 41:e13229. https://doi.org/10.1111/jfpp.13229

    Article  CAS  Google Scholar 

  62. Chakka VP, Zhou T (2020) Carboxymethylation of polysaccharides: synthesis and bioactivities. Int J Biol Macromol 165:2425–2431. https://doi.org/10.1016/j.ijbiomac.2020.10.178

    Article  CAS  PubMed  Google Scholar 

  63. Ju B, Yan D, Zhang S (2012) Micelles self-assembled from thermoresponsive 2-hydroxy-3-butoxypropyl starches for drug delivery. Carbohydr Polym 87:1404–1409. https://doi.org/10.1016/j.carbpol.2011.09.028

    Article  CAS  Google Scholar 

  64. Fu Z, Luo SJ, Liu W, Liu CM, Zhan LJ (2016) Structural changes induced by high speed jet on in vitro digestibility and hydroxypropylation of rice starch. Int J Food Sci Technol 51:1034–1040. https://doi.org/10.1111/ijfs.13046

    Article  CAS  Google Scholar 

  65. Gonzalez A, Wang YJ, Staroszczyk H, Brownmiller C, Lee SO (2018) Effect of hydroxypropylation and beta-amylase treatment on complexation of debranched starch with naringenin. Starch/Staerke 70:1–10. https://doi.org/10.1002/star.201700263

    Article  CAS  Google Scholar 

  66. Mehboob S, Mohsin-Ali T, Shaikh M, Hasnain A (2021) Effects of varying levels of succinylation and hydroxypropylation on functional, thermal and textural characteristics of white sorghum starch. Cereal Chem 98:624–633. https://doi.org/10.1002/cche.10406

    Article  CAS  Google Scholar 

  67. Besheer A, Hause G, Kressler J, Mäder K (2007) Hydrophobically modified hydroxyethyl starch: synthesis, characterization, and aqueous self-assembly into nano-sized polymeric micelles and vesicles. Biomacromol 8:359–367. https://doi.org/10.1021/bm0609487

    Article  CAS  Google Scholar 

  68. Moreno O, Cárdenas J, Atarés L, Chiralt A (2017) Influence of starch oxidation on the functionality of starch-gelatin based active films. Carbohydr Polym 178:147–158. https://doi.org/10.1016/j.carbpol.2017.08.128

    Article  CAS  PubMed  Google Scholar 

  69. Nguyen VT, Dang TB, Trinh KS (2021) Electrolytic oxidation of gelatinised tapioca starch: effect of sodium chloride content on structural and physicochemical properties. Int Food Res J 28:56–62

    Article  CAS  Google Scholar 

  70. Castanha N, Santos DNE, Cunha RL, Augusto PED (2019) Properties and possible applications of ozone-modified potato starch. Food Res Int 116:1192–1201. https://doi.org/10.1016/j.foodres.2018.09.064

    Article  CAS  PubMed  Google Scholar 

  71. Abidin MNZ, Goh PS, Ismail AF, Said N, Othman MHD, Hasbullah H, Abdullah MS, Ng BC, Kadir SHSA, Kamal F (2018) Highly adsorptive oxidized starch nanoparticles for efficient urea removal. Carbohydr Polym 201:257–263. https://doi.org/10.1016/j.carbpol.2018.08.069

    Article  CAS  PubMed  Google Scholar 

  72. Merino D, Gutiérrez TJ, Alvarez VA (2019) Structural and thermal properties of agricultural mulch films based on native and oxidized corn starch nanocomposites. Starch/Staerke 71:1–9. https://doi.org/10.1002/star.201800341

    Article  CAS  Google Scholar 

  73. Campelo PH, SantAna AS, Pedrosa-Silva-Clerici MT (2020) Starch nanoparticles: production methods, structure, and properties for food applications. Curr Opin Food Sci 33:136–140. https://doi.org/10.1016/j.cofs.2020.04.007

    Article  Google Scholar 

  74. Chacon WDC, dos Lima KTS, Valencia GA, Henao ACA (2021) Physicochemical properties of potato starch nanoparticles produced by anti-solvent precipitation. Starch/Stärke. https://doi.org/10.1002/star.202000086.This

    Article  Google Scholar 

  75. dos Santos Alves MJ, Calvo Torres de Freitas PM, Monteiro AR, Ayala Valencia G (2021) Impact of the acidified hydroethanolic solution on the physicochemical properties of starch nanoparticles produced by anti-solvent precipitation. Starch - Stärke 2100034:2100034. https://doi.org/10.1002/star.202100034

    Article  CAS  Google Scholar 

  76. Farrag Y, Ide W, Montero B, Rico M, Rodríguez-llamazares S, Barral L, Bouza R (2018) Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. Int J Biol Macromol 114:426–433. https://doi.org/10.1016/j.ijbiomac.2018.03.134

    Article  CAS  PubMed  Google Scholar 

  77. Jeong O, Shin M (2018) Preparation and stability of resistant starch nanoparticles, using acid hydrolysis and cross-linking of waxy rice starch. Food Chem 256:77–84. https://doi.org/10.1016/j.foodchem.2018.02.098

    Article  CAS  PubMed  Google Scholar 

  78. Chen P, Xie F, Zhao L, Qiao Q, Liu X (2017) Effect of acid hydrolysis on the multi-scale structure change of starch with different amylose content. Food Hydrocoll 69:359–368. https://doi.org/10.1016/j.foodhyd.2017.03.003

    Article  CAS  Google Scholar 

  79. Wang X, Wen F, Zhang S, Shen R, Jiang W, Liu J (2017) Effect of acid hydrolysis on morphology, structure and digestion property of starch from Cynanchum auriculatum Royle ex Wight. Int J Biol Macromol 96:807–816. https://doi.org/10.1016/j.ijbiomac.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  80. Gutiérrez TJ, Valencia GA (2021) Reactive extrusion-processed native and phosphated starch-based food packaging films governed by the hierarchical structure. Int J Biol Macromol 172:439–451. https://doi.org/10.1016/j.ijbiomac.2021.01.048

    Article  CAS  PubMed  Google Scholar 

  81. Wang D, Ma X, Yan L, Chantapakul T, Wang W, Ding T, Ye X, Liu D (2017) Ultrasound assisted enzymatic hydrolysis of starch catalyzed by glucoamylase: investigation on starch properties and degradation kinetics. Carbohydr Polym 175:47–54. https://doi.org/10.1016/j.carbpol.2017.06.093

    Article  CAS  PubMed  Google Scholar 

  82. dos Alves MJS, Chacon WDC, Gagliardi TR, Henao ACA, Monteiro AR, Valencia GA (2021) Food applications of starch nanomaterials: a review. Starch/Stärke 73:2100046. https://doi.org/10.1002/star.202100046

    Article  CAS  Google Scholar 

  83. Chang R, Ji N, Li M, Qiu L, Sun C, Bian X, Qiu H, Xiong L, Sun Q (2019) Green preparation and characterization of starch nanoparticles using a vacuum cold plasma process combined with ultrasonication treatment. Ultrason Sonochem 58:104660. https://doi.org/10.1016/j.ultsonch.2019.104660

    Article  CAS  PubMed  Google Scholar 

  84. Condés MC, Añón MC, Dufresne A, Mauri AN (2018) Composite and nanocomposite films based on amaranth biopolymers. Food Hydrocoll 74:159–167. https://doi.org/10.1016/j.foodhyd.2017.07.013

    Article  CAS  Google Scholar 

  85. Capello C, Leandro GC, Campos CEM, Hotza D, Carciofi BAM, Valencia GA (2019) Adsorption and desorption of eggplant peel anthocyanins on a synthetic layered silicate. J Food Eng 262:162–169. https://doi.org/10.1016/j.jfoodeng.2019.06.010

    Article  CAS  Google Scholar 

  86. Coelho-Leandro G, Capello C, Luiza-Koop B, Garcez J, Rodrigues-Monteiro A, Ayala-Valencia G (2021) Adsorption-desorption of anthocyanins from jambolan (Syzygium cumini) fruit in laponite® platelets: kinetic models, physicochemical characterization, and functional properties of biohybrids. Food Res Int 140:109903. https://doi.org/10.1016/j.foodres.2020.109903

    Article  CAS  PubMed  Google Scholar 

  87. Cortez R, Luna-Vital DA, Margulis D, De Mejia EG (2017) Natural pigments: stabilization methods of anthocyanins for food applications. Comp Rev Food Sci Food Saf 16:180. https://doi.org/10.1111/1541-4337.12244

    Article  CAS  Google Scholar 

  88. Sharif N, Khoshnoudi-Nia S, Jafari SM (2020) Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Res Int 132:109077. https://doi.org/10.1016/j.foodres.2020.109077

    Article  CAS  PubMed  Google Scholar 

  89. Kandansamy K, Somasundaram PD (2012) Microencapsulation of colors by spray drying-a review. Int J Food Eng. https://doi.org/10.1515/1556-3758.2647

    Article  Google Scholar 

  90. Arpagaus C, Collenberg A, Rütti D, Assadpour E, Jafari SM (2018) Nano spray drying for encapsulation of pharmaceuticals. Int J Pharm 546:194–214. https://doi.org/10.1016/j.ijpharm.2018.05.037

    Article  CAS  PubMed  Google Scholar 

  91. Fang Z, Bhandari B (2010) Encapsulation of polyphenols: a review. Trends Food Sci Technol 21:510–523. https://doi.org/10.1016/j.tifs.2010.08.003

    Article  CAS  Google Scholar 

  92. Fernandes A, Rocha MAA, Santos LMNBF, Brás J, Oliveira J, Mateus N, de Freitas V (2018) Blackberry anthocyanins: β-Cyclodextrin fortification for thermal and gastrointestinal stabilization. Food Chem 245:426–431. https://doi.org/10.1016/j.foodchem.2017.10.109

    Article  CAS  PubMed  Google Scholar 

  93. Kandansamy K, Somasundaram PD (2012) Microencapsulation of colors by spray drying: a review. Int J Food Eng 8:1–15. https://doi.org/10.1515/1556-3758.2647

    Article  CAS  Google Scholar 

  94. Murali S, Kar A, Mohapatra D, Kalia P (2015) Encapsulation of black carrot juice using spray and freeze drying. Food Sci Technol Int 21:604–612. https://doi.org/10.1177/1082013214557843

    Article  CAS  PubMed  Google Scholar 

  95. Das AB, Goud VV, Das C (2019) Microencapsulation of anthocyanin extract from purple rice bran using modified rice starch and its effect on rice dough rheology. Int J Biol Macromol 124:573–581. https://doi.org/10.1016/j.ijbiomac.2018.11.247

    Article  CAS  PubMed  Google Scholar 

  96. García-Tejeda YV, Salinas-Moreno Y, Martínez-Bustos F (2015) Acetylation of normal and waxy maize starches as encapsulating agents for maize anthocyanins microencapsulation. Food Bioprod Process 94:717–726. https://doi.org/10.1016/j.fbp.2014.10.003

    Article  CAS  Google Scholar 

  97. Guo Y, Qiao D, Zhao S, Zhang B, Xie F (2021) Starch-based materials encapsulating food ingredients: recent advances in fabrication methods and applications. Carbohyd Polym 270:118358. https://doi.org/10.1016/j.carbpol.2021.118358

    Article  CAS  Google Scholar 

  98. Pycia K, Juszczak L, Gałkowska D, Witczak M, Jaworska G (2016) Maltodextrins from chemically modified starches. Selected physicochemical properties. Carbohydr Polym 146:301–309. https://doi.org/10.1016/j.carbpol.2016.03.057

    Article  CAS  PubMed  Google Scholar 

  99. Muhamad II, Jusoh YMM, Nawi NM, Aziz AA, Padzil AM, Lian HL (2018) Encapsulation methods : anthocyanin plant pigment. In: Grumezescu AM, Holban AM (eds) Natural and artificial flavoring agents and food dyes. Elsevier Inc., Amsterdam, pp 496–526

    Google Scholar 

  100. Norkaew O, Thitisut P, Mahatheeranont S, Pawin B, Sookwong P, Yodpitak S, Lungkaphin A (2019) Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Food Chem 294:493–502. https://doi.org/10.1016/j.foodchem.2019.05.086

    Article  CAS  PubMed  Google Scholar 

  101. Robert P, Gorena T, Romero N, Sepulveda E, Chavez J, Saenz C (2010) Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. Int J Food Sci Technol 45:1386–1394. https://doi.org/10.1111/j.1365-2621.2010.02270.x

    Article  CAS  Google Scholar 

  102. Rosa JR, Cezimbra Weis GC, Bolson Moro KI, Sasso Robalo S, Elias- Assmann C, Picolli da Silva L, Irineu Muller E, de Bona da Silva C, Ragagnin de Menezes C, Severo da Rosa C (2021) Effect of wall materials and storage temperature on anthocyanin stability of microencapsulated blueberry extract. LWT. https://doi.org/10.1016/j.lwt.2021.111027

    Article  Google Scholar 

  103. Nogueira GF, Soares CT, Martin LGP, Fakhouri FM, de Oliveira RA (2020) Influence of spray drying on bioactive compounds of blackberry pulp microencapsulated with arrowroot starch and gum arabic mixture. J Microencapsul 37:65–76. https://doi.org/10.1080/02652048.2019.1693646

    Article  CAS  PubMed  Google Scholar 

  104. Gómez-Aldapa CA, Castro-Rosas J, Rangel-Vargas E, Navarro-Cortez RO, Cabrera-Canales ZE, Díaz-Batalla L, Martínez-Bustos F, Guzmán-Ortiz FA, Falfan-Cortes RN (2019) A modified Achira (Canna indica L.) starch as a wall material for the encapsulation of Hibiscus sabdariffa extract using spray drying. Food Res Int 119:547–553. https://doi.org/10.1016/j.foodres.2018.10.031

    Article  CAS  PubMed  Google Scholar 

  105. Rosário FM, Biduski B, dos Santos DF, Hadlish EV, Tormen L, dos Santos GHF, Pinto VZ (2021) Red araçá pulp microencapsulation by hydrolyzed pinhão starch, and tara and arabic gums. J Sci Food Agric 101:2052–2062. https://doi.org/10.1002/JSFA.10825

    Article  PubMed  Google Scholar 

  106. Akhavan Mahdavi S, Jafari SM, Assadpour E, Ghorbani M (2016) Storage stability of encapsulated barberry’s anthocyanin and its application in jelly formulation. J Food Eng 181:59–66. https://doi.org/10.1016/j.jfoodeng.2016.03.003

    Article  CAS  Google Scholar 

  107. Rezvankhah A, Emam-Djomeh Z, Askari G (2020) Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: a review. Drying Technol 38:235–258. https://doi.org/10.1080/07373937.2019.1653906

    Article  CAS  Google Scholar 

  108. Saifullah M, Shishir MRI, Ferdowsi R, Tanver Rahman MR, van Vuong Q (2019) Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: a critical review. Trends Food Sci Technol 86:230–251. https://doi.org/10.1016/j.tifs.2019.02.030

    Article  CAS  Google Scholar 

  109. Shahidi F, Han XQ (1993) Encapsulation of food ingredients. Crit Rev Food Sci Nutr 33:501–547. https://doi.org/10.1080/10408399309527645

    Article  CAS  PubMed  Google Scholar 

  110. Stoll L, Costa TMH, Jablonski A, Flôres SH, de Oliveira Rios A (2016) Microencapsulation of anthocyanins with different wall materials and its application in active biodegradable films. Food Bioprocess Technol 9:172–181. https://doi.org/10.1007/s11947-015-1610-0

    Article  CAS  Google Scholar 

  111. Zuidam NJ, Nedovic VA (2010) Encapsulation technologies for active food ingredients and food processing. Springer, New York

    Book  Google Scholar 

  112. Fredes C, Becerra C, Parada J, Robert P (2018) The microencapsulation of maqui (Aristotelia chilensis (Mol.) Stuntz) juice by spray-drying and freeze-drying produces powders with similar anthocyanin stability and bioaccessibility. Molecules 23:1227. https://doi.org/10.3390/molecules23051227

    Article  CAS  PubMed Central  Google Scholar 

  113. Romero-González J, Shun-Ah Hen K, Lemus-Mondaca R, Muñoz-Fariña O (2020) Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules. Food Chem 313:126115. https://doi.org/10.1016/j.foodchem.2019.126115

    Article  CAS  PubMed  Google Scholar 

  114. Cai X, Du X, Cui D, Wang X, Yang Z, Zhu G (2019) Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation. Food Hydrocoll 91:238–245. https://doi.org/10.1016/j.foodhyd.2019.01.034

    Article  CAS  Google Scholar 

  115. Tao Y, Wang P, Wang J, Wu Y, Han Y, Zhou J (2017) Combining various wall materials for encapsulation of blueberry anthocyanin extracts: optimization by artificial neural network and genetic algorithm and a comprehensive analysis of anthocyanin powder properties. Powder Technol 311:77–87. https://doi.org/10.1016/j.powtec.2017.01.078

    Article  CAS  Google Scholar 

  116. Mahdavi SA, Jafari SM, Assadpour E, Ghorbani M (2016) Storage stability of encapsulated barberry’s anthocyanin and its application in jelly formulation. J Food Eng 181:59–66. https://doi.org/10.1016/j.jfoodeng.2016.03.003

    Article  CAS  Google Scholar 

  117. Romero-González J, Shun Ah-Hen K, Lemus-Mondaca R, Muñoz-Fariña O (2020) Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules. Food Chem 313:126115. https://doi.org/10.1016/j.foodchem.2019.126115

    Article  CAS  PubMed  Google Scholar 

  118. dos Santos Lima KT, Garcez J, dos Santos Alves MJ, Monteiro AR, Valencia GA (2021) Physicochemical properties of modified starches obtained by anti-solvent precipitation containing anthocyanins from jambolan (Syzygium cumini) fruit. Starch/Staerke. https://doi.org/10.1002/star.202000221

    Article  Google Scholar 

  119. Sakulnarmrat K, Wongsrikaew D, Konczak I (2021) Microencapsulation of red cabbage anthocyanin-rich extract by drum drying technique. LWT 137:110473. https://doi.org/10.1016/j.lwt.2020.110473

    Article  CAS  Google Scholar 

  120. Abang Zaidel DN, Makhtar NA, Mohd Jusoh YM, Muhamad II (2015) Efficiency and thermal stability of encapsulated anthocyanins from red dragon fruit (Hylocereus polyrhizus (Weber) Britton & Rose) using microwave-assisted technique. Chem Eng Trans 43:127–132. https://doi.org/10.3303/CET1543022

    Article  Google Scholar 

  121. Arisanti CIS, Sukawati CBAC, Prasetia IGNJA, Wirasuta IMAG (2020) Stability of anthocyanins encapsulated from purple sweet potato extract affected by maltodextrin concentration. Macromol Symposia. https://doi.org/10.1002/masy.201900127

    Article  Google Scholar 

  122. Arisanti CIS, Sukawati CBAC, Prasetia IGNJA, Wirasuta IMAG (2020) Stability of anthocyanins encapsulated from purple sweet potato extract affected by maltodextrin concentration. Macromol Symposia 391:10–14. https://doi.org/10.1002/masy.201900127

    Article  CAS  Google Scholar 

  123. Roy S, Rhim JW (2021) Anthocyanin food colorant and its application in pH-responsive color change indicator films. Crit Rev Food Sci Nutr 61:2297–2325. https://doi.org/10.1080/10408398.2020.1776211

    Article  CAS  PubMed  Google Scholar 

  124. Qin Y, Yun D, Xu F, Chen D, Kan J, Liu J (2021) Smart packaging films based on starch/polyvinyl alcohol and Lycium ruthenicum anthocyanins-loaded nano-complexes: functionality, stability and application. Food Hydrocoll 119:106850. https://doi.org/10.1016/j.foodhyd.2021.106850

    Article  CAS  Google Scholar 

  125. Chranioti C, Nikoloudaki A, Tzia C (2015) Saffron and beetroot extracts encapsulated in maltodextrin, gum Arabic, modified starch and chitosan: Incorporation in a chewing gum system. Carbohydr Polym 127:252–263. https://doi.org/10.1016/j.carbpol.2015.03.049

    Article  CAS  PubMed  Google Scholar 

  126. Sahat NS, Zaidel DNA, Muhamad II, Alam MNHZ (2014) Stability study of water-in-oil emulsion containing anthocyanins from red cabbage. Jurnal Teknologi (Sci Eng) 69:1–5. https://doi.org/10.11113/jt.v69.3163

    Article  Google Scholar 

  127. Vergara C, Pino MT, Zamora O, Parada J, Pérez R, Uribe M, Kalazich J (2020) Microencapsulation of anthocyanin extracted from purple flesh cultivated potatoes by spray drying and its effects on in vitro gastrointestinal digestion. Molecules. https://doi.org/10.3390/molecules25030722

    Article  PubMed  PubMed Central  Google Scholar 

  128. Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61:139–146. https://doi.org/10.1080/16546628.2017.1361779

    Article  CAS  Google Scholar 

  129. dos Santos Lima KT, Garcez J, dos Santos Alves MJ, Monteiro AR, Valencia GA (2021) Physicochemical properties of modified starches obtained by anti-solvent precipitation containing anthocyanins from jambolan (Syzygium cumini) fruit. Starch/Staerke 73:1–10. https://doi.org/10.1002/star.202000221

    Article  CAS  Google Scholar 

  130. Raharjo S, Purwandari FA, Hastuti P, Olsen K (2019) Stabilization of black rice (Oryza Sativa, L. Indica) anthocyanins using plant extracts for copigmentation and maltodextrin for encapsulation. J Food Sci 84:1712–1720. https://doi.org/10.1111/1750-3841.14688

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.B. Schlindweinn gratefully acknowledges the National Council for Scientific and Technological Development (CNPq) for the undergraduate fellowship. W.D.C. Chacon and B.L. Koop gratefully acknowledge the Improvement of Higher Education Personnel (CAPES) for the MS and PhD fellowships, respectively. G. A. Valencia would like to thank the Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) (grants 2021TR000418 and 2021TR001887) for financial support. The authors gratefully acknowledge the Federal University of Santa Catarina (UFSC) for the support.

Author information

Authors and Affiliations

Authors

Contributions

EBS carried out the review of Sect. Encapsulation of Anthocyanins Using Native and Modified Starches as Wall Materials. WDCC performed the Sect. Chemical Treatments Employed to Modify Starches Used as Wall Materials for Encapsulation of Anthocyanins. BLK conducted the review of Sect. Anthocyanin Classification, Properties, and Sources. JMF done the Sect. Main Application of Encapsulated Anthocyanins Using Starches and Their Derivatives as Wall Materials. ARM corrected the manuscript. GAV designed, revised, and corrected this manuscript, as well as made the abstract and Sects. Introduction and Conclusions and Perspectives of this review.

Corresponding author

Correspondence to Germán Ayala Valencia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Ethics approval was not required for this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlindweinn, E.B., Chacon, W.D.C., Koop, B.L. et al. Starch-Based Materials Encapsulating Anthocyanins: A Review. J Polym Environ 30, 3547–3565 (2022). https://doi.org/10.1007/s10924-022-02474-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02474-6

Keywords

Navigation