Skip to main content
Log in

Thermal Stabilization of Recycled PET Through Chain Extension and Blending with PBT

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study investigates the effect of using a multifunctional epoxide chain extender (Joncryl® ADR 4468) on the thermal stabilization and rheological properties of recycled polyethylene terephthalate (R-PET) and its blends with polybutylene terephthalate (PBT). The R-PET samples were prepared without and with chain extender (CE) contents of 0.4 wt% and 0.8 wt%. R-PET/PBT blends with weight ratios of 75w/25w, 50w/50w and 25w/75w were also prepared without and with a given CE content of 0.2 wt%. The thermal stability of the melt blended samples was analyzed through small amplitude oscillatory shear (SAOS) rheological experiments. The structure of the samples was evaluated using a Fourier transform infrared (FTIR) spectrometer. While the dynamic rheological properties of R-PET were improved with the addition of Joncryl and by blending with PBT, during the SAOS rheological experiments, the complex viscosity of R-PET further increased due to the concurrent polycondensation of R-PET and the resumption of Joncryl reaction with R-PET molecules. These reactions during the rheological experiments were further expedited with increasing the testing temperature. On the other hand, in R-PET/PBT blends, the reactivity of Joncryl was more noticeable in blends with higher R-PET contents due to the higher available internal reactive sites of much shorter R-PET molecules. It was observed that the addition of only 0.2 wt% Joncryl to the blends of R-PET/PBT (75w/25w) dramatically improves the thermal stability and dynamic rheological properties of R-PET and most likely its processability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Utracki LA (2013) Commercial polymer blends. Springer Science & Business Media

  2. Kannan G, Grieshaber SE, Zhao W (2016) Thermoplastic polyesters. Handb Thermoplast 41:319

    Google Scholar 

  3. Lepoittevin B, Roger P (2011) Poly (ethylene terephthalate). Handb Eng Spec Thermoplast 3:97–126

    Article  CAS  Google Scholar 

  4. Ghanbari A, Heuzey MC, Carreau PJ, Ton-That MT (2013) A novel approach to control thermal degradation of PET/organoclay nanocomposites and improve clay exfoliation. Polymer 54:1361–1369. https://doi.org/10.1016/j.polymer.2012.12.066

    Article  CAS  Google Scholar 

  5. Raffa P, Coltelli M-B, Savi S, Bianchi S (2012) Castelvetro, Chain extension and branching of poly (ethylene terephthalate) (PET) with di-and multifunctional epoxy or isocyanate additives: An experimental and modelling study. React Funct Polym 72:50–60. https://doi.org/10.1016/j.reactfunctpolym.2011.10.007

    Article  CAS  Google Scholar 

  6. Xu XF, Ghanbari A, Leelapornpisit W, Heuzey MC, Carreau P (2011) Effect of ionomer on barrier and mechanical properties of PET/Organoclay nanocomposites prepared by melt compounding. Int Polym Process 26(4):444–455. https://doi.org/10.3139/217.2477

    Article  CAS  Google Scholar 

  7. Zhang Y, Guo W, Zhang H, Wu C (2009) Influence of chain extension on the compatibilization and properties of recycled poly (ethylene terephthalate)/linear low density polyethylene blends. Polym Degrad Stab 94:1135–1141. https://doi.org/10.1016/j.polymdegradstab.2009.03.010

    Article  CAS  Google Scholar 

  8. Shen L, Worrell E, Patel MK (2010) Open-loop recycling: a LCA case study of PET bottle-to-fibre recycling. Resour Conserv Recycl 55:34–52. https://doi.org/10.1016/j.resconrec.2010.06.014

    Article  Google Scholar 

  9. Galanty PG, Richardson JJ (1988) Polyethylene Terephthalates (PET).  ASM Int. Eng. Plast Eng Mater Handbook 2:172–176

    Google Scholar 

  10. MacArthur DE, Waughray D, Stuchtey MR (2016) The new plastics economy, rethinking the future of plastics. In: World Econ. Forum

  11. Gourmelon G (2015) Global plastic production rises, recycling lags. Vital Signs 22:91–95

    Google Scholar 

  12. Al-Sabagh AM, Yehia FZ, Eshaq G, Rabie AM, ElMetwally AE (2016) Greener routes for recycling of polyethylene terephthalate. Egypt J Pet 25:53–64. https://doi.org/10.1016/j.ejpe.2015.03.001

    Article  Google Scholar 

  13. Sang T, Wallis CJ, Hill G, Britovsek GJP (2020) Polyethylene terephthalate degradation under natural and accelerated weathering conditions. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2020.109873

    Article  Google Scholar 

  14. European Union (2019) Turning the tide on single use plastics. [Brochure] https://op.europa.eu/en/publication-detail/-/publication/fbc6134e-367f-11ea-ba6e-01aa75ed71a1

  15. Badia JD, Strömberg E, Karlsson S, Ribes-Greus A (2012) The role of crystalline, mobile amorphous and rigid amorphous fractions in the performance of recycled poly (ethylene terephthalate) (PET). Polym Degrad Stab 97:98–107. https://doi.org/10.1016/j.polymdegradstab.2011.10.008

    Article  CAS  Google Scholar 

  16. Kang DH, Auras R, Vorst K, Singh J (2011) An exploratory model for predicting post-consumer recycled PET content in PET sheets. Polym Test 30:60–68. https://doi.org/10.1016/j.polymertesting.2010.10.010

    Article  CAS  Google Scholar 

  17. G.P. Karayannidis, E.A. Psalida (2000) Chain extension of recycled poly (ethylene terephthalate) with 2, 2′-(1, 4‐phenylene) bis (2‐oxazoline), J. Appl. Polym. Sci. 77:2206–2211

    Article  CAS  Google Scholar 

  18. Japon S, Boogh L, Leterrier Y, Månson J-A (2000) Reactive processing of poly (ethylene terephthalate) modified with multifunctional epoxy-based additives. Polymer 41:5809–5818. https://doi.org/10.1016/S0032-3861(99)00768-5

    Article  CAS  Google Scholar 

  19. Torres N, Robin JJ, Boutevin B (2000) Study of thermal and mechanical properties of virgin and recycled poly (ethylene terephthalate) before and after injection molding. Eur Polym J 36:2075–2080. https://doi.org/10.1016/S0014-3057(99)00301-8

    Article  CAS  Google Scholar 

  20. Awaja F, Daver F, Kosior E (2004) Recycled poly (ethylene terephthalate) chain extension by a reactive extrusion process. Polym Eng Sci 44:1579–1587. https://doi.org/10.1002/pen.20155

    Article  CAS  Google Scholar 

  21. Zhang Y, Zhang C, Li H, Du Z, Li C (2010) Chain extension of poly (ethylene terephthalate) with bisphenol-A dicyanate. J Appl Polym Sci 117:2003–2008. https://doi.org/10.1002/app.32136

    Article  CAS  Google Scholar 

  22. Incarnato L, Scarfato P, Di Maio L, Acierno D (2000) Structure and rheology of recycled PET modified by reactive extrusion. Polymer 41:6825–6831. https://doi.org/10.1016/S0032-3861(00)00032-X

    Article  CAS  Google Scholar 

  23. Costa ARM, Almeida TG, Silva SML, Carvalho LH, Canedo EL (2015) Chain extension in poly (butylene-adipate-terephthalate). Inline testing in a laboratory internal mixer. Polym Test 42:115–121. https://doi.org/10.1016/j.polymertesting.2015.01.007

    Article  CAS  Google Scholar 

  24. Berg D, Schaefer K, Moeller M (2019) Impact of the chain extension of poly (ethylene terephthalate) with 1, 3-phenylene‐bis‐oxazoline and N, N′‐carbonylbiscaprolactam by reactive extrusion on its properties. Polym Eng Sci 59:284–294. https://doi.org/10.1002/pen.24903

    Article  CAS  Google Scholar 

  25. Jacques B, Devaux J, Legras R, Nield E (1996) Reactions induced by triphenyl phosphite addition during melt mixing of poly (ethylene terephthalate)/poly (butylene terephthalate) blends: influence on polyester molecular structure and thermal behaviour. Polymer 37:1189–1200. https://doi.org/10.1016/S0032-3861(97)00097-9

    Article  CAS  Google Scholar 

  26. Jacques B, Devaux J, Legras R, Nield E (1996) Investigation on model molecules of the reactions induced by triphenyl phosphite addition during polyester processing. Macromolecules 29:3129–3138

    Article  CAS  Google Scholar 

  27. Jacques B, Devaux J, Legras R, Nield E (1997) Reactions induced by triphenyl phosphite addition during melt mixing of PET/PBT blends: chromatographic evidence of a molecular weight increase due to the creation of bonds of two different natures. Polymer 38:5367–5377. https://doi.org/10.1016/S0032-3861(97)00097-9

    Article  CAS  Google Scholar 

  28. Pesetskii SS, Shevchenko VV, Dubrovsky VV (2018) Morphology and properties of poly (ethylene terephthalate) and thermoplastic polyester elastomer blends modified in the melt by a diisocyanate chain extender and filled with a short glass fiber. J Appl Polym Sci 135:45711. https://doi.org/10.1002/app.45711

    Article  CAS  Google Scholar 

  29. Tuna B, Ozkoc G (2017) Effects of diisocyanate and polymeric epoxidized chain extenders on the properties of recycled poly (lactic acid). J Polym Environ 25:983–993. https://doi.org/10.1007/s10924-016-0856-6

    Article  CAS  Google Scholar 

  30. Arayesh H, Golshan Ebrahimi N, Khaledi B, Khabazian Esfahani M (2020) Introducing four different branch structures in PET by reactive processing: a rheological investigation. J Appl Polym Sci. https://doi.org/10.1002/app.49243

    Article  Google Scholar 

  31. Kahraman Y, Özdemir B, Kılıç V, Goksu YA, Nofar M (2021) Super toughened and highly ductile PLA / TPU blend systems by in situ reactive interfacial compatibilization using multifunctional epoxy-based chain extender. J Appl Polym Sci 138(20):50457. https://doi.org/10.1002/app.50457

    Article  CAS  Google Scholar 

  32. Nofar M, Salehiyan R, Sinha Ray S (2019) Rheology of poly (lactic acid)-based systems. Polym Rev 59:465–509. https://doi.org/10.1080/15583724.2019.1572185

    Article  CAS  Google Scholar 

  33. Nofar M, Zhu W, Park CB, Randall J (2011) Crystallization kinetics of linear and long-chain-branched polylactide. Ind Eng Chem Res 50:13789–13798. https://doi.org/10.1021/ie2011966

    Article  CAS  Google Scholar 

  34. Nofar M (2018) Synergistic Effects of Chain Extender and Nanoclay on the Crystallization Behavior of Polylactide. Int J Mater Sci Res 1:1–8. https://doi.org/10.18689/ijmsr-1000101

    Article  Google Scholar 

  35. Jalali A, Huneault MA, Nofar M, Lee PC, Park CB (2019) Effect of branching on flow-induced crystallization of poly (lactic acid). Eur Polym J 119:410–420. https://doi.org/10.1016/j.eurpolymj.2019.07.045

    Article  CAS  Google Scholar 

  36. Standau T, Nofar M, Dorr D, Altstädt V (2021) A review on multifunctional epoxy-based Joncryl® ADR chain extended thermoplastics” . Polym Rev. https://doi.org/10.1080/15583724.2021.1918710

    Article  Google Scholar 

  37. Villalobos M, Awojulu A, Greeley T, Turco G, Deeter G (2006) Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Energy 31(15):3227–3234. https://doi.org/10.1016/j.energy.2006.03.026

    Article  CAS  Google Scholar 

  38. Raffa P, Coltelli MB, Castelvetro V (2014) Expanding the application field of post-consumer poly (ethylene terephthalate) through structural modification by reactive blending. J Appl Polym Sci. https://doi.org/10.1002/app.40881

    Article  Google Scholar 

  39. Tavares AA, Silva DF, Lima PS, Andrade DL, Silva SM, Canedo EL (2016) Chain extension of virgin and recycled polyethylene terephthalate. Polym Test 50:26–32. https://doi.org/10.1016/j.polymertesting.2015.11.020

    Article  CAS  Google Scholar 

  40. Duarte IS, Tavares AA, Lima PS, Andrade DL, Carvalho LH, Canedo EL, Silva SM (2016) Chain extension of virgin and recycled poly (ethylene terephthalate): Effect of processing conditions and reprocessing. Polym Degrad Stab 124:26–34. https://doi.org/10.1016/j.polymdegradstab.2015.11.021

    Article  CAS  Google Scholar 

  41. Xiao L, Wang H, Qian Q, Jiang X, Liu X, Huang B, Chen Q (2012) Molecular and structural analysis of epoxide-modified recycled poly (ethylene terephthalate) from rheological data. Polym Eng Sci 52:2127–2133. https://doi.org/10.1002/pen.23175

    Article  CAS  Google Scholar 

  42. Härth M, Dörnhöfer A, Kaschta J, Münstedt H, Schubert DW (2021) Molecular structure and rheological properties of a poly (ethylene terephthalate) modified by two different chain extenders. J Appl Polym Sci 138(13):50110. https://doi.org/10.1002/app.50110

    Article  CAS  Google Scholar 

  43. Nofar M, Oğuz H (2019) Development of PBT/recycled-PET blends and the influence of using chain extender. J Polym Environ 27:1404–1417. https://doi.org/10.1007/s10924-019-01435-w

    Article  CAS  Google Scholar 

  44. Escala A, Stein RS (1979) Crystallization studies of blends of polyethylene terephthalate and polybutylene terephthalate. ACS Publications. DOI:https://doi.org/10.1021/ba-1979-0176.ch024

    Article  Google Scholar 

  45. Avramova N (1995) Amorphous poly (ethylene terephthalate)/poly (butylene terephthalate) blends: miscibility and properties. Polymer 36:801–808. https://doi.org/10.1016/0032-3861(95)93111-X

    Article  CAS  Google Scholar 

  46. Szostak M (2004) Mechanical and thermal properties of PET/PBT blends. Mol Cryst Liq Cryst 416:209–215. https://doi.org/10.1080/15421400490481377

    Article  CAS  Google Scholar 

  47. Aravinthan G, Kale DD (2005) Blends of poly (ethylene terephthalate) and poly (butylene terephthalate). J Appl Polym Sci 98:75–82. https://doi.org/10.1002/app.22017

    Article  CAS  Google Scholar 

  48. Ito K, Haraguchi Y, Hayakawa S, Toda A (2008) Enhanced crystallization of blended poly (ethylene terephthalate) and poly (butylene terephthalate). Polym J 40:992. https://doi.org/10.1295/polymj.PJ2007197

    Article  CAS  Google Scholar 

  49. Baxi RN, Pathak SU, Peshwe DR (2010) Mechanical, thermal, and structural characterization of poly (ethylene terephthalate) and poly (butylene terephthalate) blend systems by the addition of postconsumer poly (ethylene terephthalate). J Appl Polym Sci 115:928–934. https://doi.org/10.1002/app.30647

    Article  CAS  Google Scholar 

  50. Marcinčin A, Körmendy E, Hricová M, Rusnák A, Aneja AP (2006) Rheologicalbehavior of polyester blend and mechanical properties of thepolypropylene–polyester blend fibers. J. Appl. Polym. Sci. 102(5):4222–4227. https://doi.org/10.1002/app.24682

    Article  CAS  Google Scholar 

  51. Marcinčin A, Körmendy E, Hricová M, Rusnák A, Aneja AP (2006) Rheological behavior of polyester blend and mechanical properties of the polypropylene–polyester blend fibers. J Appl Polym Sci 102(5):4222–4227. https://doi.org/10.1002/app.24682

    Article  CAS  Google Scholar 

  52. Stocco A, La Carrubba V, Piccarolo S, Brucato V (2009) The solidification behavior of a PBT/PET blend over a wide range of cooling rate. J Polym Sci Part B: Polym Phys 47(8):799–810. https://doi.org/10.1002/polb.21687

    Article  CAS  Google Scholar 

  53. Kruse M, Wagner M (2016) Time-resolved rheometry of poly(ethylene terephthalate) during thermal and thermo-oxidative degradation. Rheol Acta 55(8):789–800. https://doi.org/10.1007/s00397-016-0955-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial supports from Istanbul Technical University Scientific Research Project (ITU-BAP) with the project number of 42102. We thank Arçelik A.Ş. and Hazal Oguz for kindly providing us the materials used in this study. The authors would also like to sincerely thank Professor Seniha Fatma Guner and Professor Gurbuz Gunes for providing us their laboratory space to perform rheological and compression molding experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Nofar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guclu, M., Alkan Göksu, Y., Özdemir, B. et al. Thermal Stabilization of Recycled PET Through Chain Extension and Blending with PBT. J Polym Environ 30, 719–727 (2022). https://doi.org/10.1007/s10924-021-02238-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02238-8

Keywords

Navigation