Skip to main content
Log in

Multi-functionalized Cellulosic Biomass by Plasma-Assisted Bonding of α-Amino Carboxylic Acid to Enhance the Removal of Ibuprofen in Aqueous Solution

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The present study concerns the removal of ibuprofen (IBP) from aqueous medium using glycine grafted plasma-modified cocoa shell as an effective and promising sorbent. The plasma pretreatment prior to the grafting process creates hydroxyl (–OH), carbonyl (–CO) and carboxyl (–COOH) groups, which were used as binder sites for glycine graft immobilization. The grafting technique was successful as an IR spectra of grafted biosorbent exhibited specific functional groups (N–H, C–N, –OH, C=O, COOH), which were characteristics of newly formed atomic bonds. The attachment to biomass was made through a single glycine and a glycine dipeptide esterified. The results of the removal tests demonstrated that the amounts of IBP uptake at equilibrium were higher with glycine grafted biomass (BG) than un-grafted, so going from 15.24 to 19.88 mg/g for initial 20 mg/L IBP and from 23.18 to 26.98 mg/g for 30 mg/L IBP. Amongst the tested kinetics model to predict adsorption behavior of the experimental results, the Avrami fractional-order model was the most suitable. The values of ΔH° and ΔG° suggested a spontaneous and exothermic process, which is typical for physical interaction in accordance with the Liu best-fitted isotherm model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ternes TA, Herrmann N, Bonerz M, Knacker T, Siegrist H, Joss A (2004) A rapid method to measure the solid-water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Res 38:4075–4084

    Article  CAS  PubMed  Google Scholar 

  2. Zhou LJ, Ying GG, Liu S, Zhao JL, Yang B, Chen ZF, Lai HJ (2013) Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Sci Total Environ 452–453:365–376

    Article  PubMed  CAS  Google Scholar 

  3. Khadir A, Mollahosseini A, Tehrani RMA, Negarestani M (2020) A review on pharmaceutical removal from aquatic media by adsorption: understanding the influential parameters and novel adsorbents. In: Inamuddin AA (ed) Sustainable green chemical processes and their allied applications. Springer, Cham, pp 207–265. https://doi.org/10.1007/978-3-030-42284-4_8

    Chapter  Google Scholar 

  4. Antunes M, Valdemar IE, Régis G, Janaina SC, Andreia NF, Marcelo G (2012) Removal of diclofenac sodium from aqueous solution by Isabel grape bagasse. Chem Eng J 192:114–121

    Article  CAS  Google Scholar 

  5. Rossolini GM, Arena F, Pecile P, Pollini S (2014) Update on the antibiotic resistance crisis. Curr Opin Pharmacol 18:56–60

    Article  CAS  PubMed  Google Scholar 

  6. Nowrotek M, Kotlarska E, Łuczkiewicz A, Felis E, Sochacki A, Miksch K (2017) The treatment of wastewater containing pharmaceuticals in microcosm constructed wetlands: the occurrence of integrons (int1–2) and associated resistance genes (sul1–3, qacEΔ1). Environ Sci Pollut Res Int 24:15055–15066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Salman T, Temel FA, Turan NG, Ardali Y (2015) Adsorption of lead (II) ions onto diatomite from aqueous solutions: mechanism, isotherm and kinetic studies. Glob NEST J 18(1):1–10

    Article  Google Scholar 

  8. Baquero MC, Giraldo L, Moreno JC, Suarez-Garcia F, Martinez-Alonso A, Tascon JMD (2003) Activated carbons by pyrolysis of coffee bean husks in presence of phosphoric acid. J Anal Appl Pyrolysis 70:779–784

    Article  CAS  Google Scholar 

  9. Yagmur E, Ozmak M, Aktas Z (2008) A novel method for production of activated carbon from waste tea by chemical activation with micro- wave energy. Fuel 87:3278–3285

    Article  CAS  Google Scholar 

  10. Veira AP, Santana SAA, Bezerra CWB, Silva HAS, Chaves JAP, De Melo JCP, Da Silva-Filho EC, Airoldi C (2009) Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp. J Hazard Mater 166:1272–1278

    Article  CAS  Google Scholar 

  11. Sanchez-Martin J, Beltran-Heredia J, Gragera-Carvajal J (2011) Caesalpinia spinosa and Castanea sativa tannins: a new source of biopolymers with adsorbent capacity. Preliminary assessment on cationic dye removal. Ind Crop Prod 34:1238–1240

    Article  CAS  Google Scholar 

  12. Gutha Y, Munagapati VS, Alla SR, Abburi K (2011) Biosorptive removal of Ni(II) from aqueous solution by Caesalpinia bonducella seed powder. Sep Sci Techno 46:2291–2297

    Article  CAS  Google Scholar 

  13. Alencar WS, Acayanka E, Lima EC, Royer B, De Souza FE, Lameira J, Alves CN (2012) Application of Mangifera indica (mango) seeds as a biosorbent for removal of Victazol Orange 3R dye from aqueous solution and study of the biosorption mechanism. Chem Eng J 209:577–588

    Article  CAS  Google Scholar 

  14. Saka C, Sahin Ö, Çelik MS (2012) The removal of methylene blue from aqueous solutions by using microwave heating and pre-boiling treated onion skins as a new adsorbent. Energy Source Part A 34(17):1577–1590

    Article  CAS  Google Scholar 

  15. Thiyagarajan E, Saravanan P, Shiyamala Devi S, Saranya P, Gandhi NN, Renganathan S (2013) Biosorption of reactive red 2 using positively charged Metapenaeus monoceros shells. J Saudi Chem Soc 21:1–6

    Article  CAS  Google Scholar 

  16. Zhang Z, O’Hara IM, Kent GA, Doherty WOS (2013) Comparative study on adsorption of two cationic dyes by milled sugarcane bagasse. Ind Crop Prod 42:41–49

    Article  CAS  Google Scholar 

  17. Chang Ming D, Dong Wei H, Hong Xia L, Mu Dan X, Wang K, Zhang L, Li Z, Chen T, Mo J, Gao D, Huang Y, Liu S, Yu L, Zhang C (2013) Adsorption of acid orange II from aqueous solution by plasma modified activated carbon fibers. Plasma Chem Plasma Process 33:65–82

    Article  CAS  Google Scholar 

  18. Wang N, Wang P (2016) Study and application status of microwave in organic wastewater treatment—A review. Chem Eng J 283:193–214

    Article  CAS  Google Scholar 

  19. Lin L, Yuan SH, Chen J, Xu ZQ, Lu XH (2009) Removal of ammonia nitrogen in wastewater by microwave radiation. J Hazard Mater 161:1063–1068

    Article  CAS  PubMed  Google Scholar 

  20. Yang L, Chen ZL, Yang JF, Liu Y, Wang J, Yu YJ, Gao XM (2014) Removal of volatile fatty acid in landfill leachate by the microwave-hydrothermal method. Desalin Water Treat 52:4423–4429

    Article  CAS  Google Scholar 

  21. Takam B, Acayanka E, Kamgang YG, Pedekwang MT, Laminsi S (2017) Enhancement of sorption capacity of cocoa shell biomass modified with non-thermal plasma for removal of both cationic and anionic dyes from aqueous solution. Environ Sci Pollut Res 20:16958–16970

    Article  CAS  Google Scholar 

  22. Takam B, Tarkwa JB, Acayanka E, Nzali S, Chesseu DM, Kamgang GY, Laminsi S (2020) Insight into the removal process mechanism of pharmaceutical compounds and dyes on plasma-modified biomass: the key role of adsorbate specificity. Environ Sci Pollut Res 27:20500–20515

    Article  CAS  Google Scholar 

  23. Tamo SB, Kamgang YG, Acayanka E, Medjo SL, Tiya-Djowe A, Kuete-Saa D, Laminsi S, Tchadjie L (2016) Plasma chemical functionalization of a Cameroonian kaolinite clay for a greater hydrophobicity. Plasma Chem Plasma Process 6:1449–1469

    Article  CAS  Google Scholar 

  24. Şahin Ö, Kaya M, Cafer S (2015) Plasma-surface modification on bentonite clay to improve the performance of adsorption of methylene blue. Appl Clay Sci 116–117:46–53

    Article  CAS  Google Scholar 

  25. Acayanka E, Tarkwa JB, Takam B, Abia D, Nzali S, Kamgang YG, Laminsi S (2020) Removal of various pollutants from wastewater using plasma-modified lignocellulose-derived as a low-cost adsorbent: an overview. Mini Rev Org Chem 18:1–16. https://doi.org/10.2174/1570193X17999200707111704

    Article  Google Scholar 

  26. Gong R, Ding Y, Li M, Yang C, Liu H, Sun Y (2005) Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes Pigments 64:187–192

    Article  CAS  Google Scholar 

  27. Prola LDT, Machado FM, Bergmann CP, Felipe De Souza, Gally CR, Lima EC, Adebayo MA, Dias SLP, Calvete T (2013) Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon. J Environ Manag 130:166–175

    Article  CAS  Google Scholar 

  28. Prola LDT, Acayanka E, Lima EC, Umpierres CS, Julio CP, Vaghetti Wmekson OS, Laminsi S, Djifon PT (2013) Comparison of Jatropha curcas shells in natural form and treated by non-thermal plasma as biosorbents for removal of Reactive Red 120 textile dye from aqueous solution. Ind Crop Prod 46:328–340

    Article  CAS  Google Scholar 

  29. Cardoso NF, Lima EC, Pinto IS, Amavisca CV, Royer B, Pinto RB, Alencar WS, Pereira SFP (2011a) Application of cupuassu shell as biosorbent for the removal of textile dyes from aqueous solution. J Environ Manag 92:1237–1247

    Article  CAS  Google Scholar 

  30. Calvete T, Lima EC, Cardoso NF, Dias SLP, Pavan FA (2009) Application of carbon adsorbents prepared from the Brazilian pine fruit shell for removal of Procion red MX3B from aqueous solution-kinetic, equilibrium, and thermodynamic studies. Chem Eng J 155:627–636

    Article  CAS  Google Scholar 

  31. Lagergren S (1898) Zurtheorie der sogenannten adsorption gelösterstoffe. K Vet Akad Hand 24:1–39

    Google Scholar 

  32. Blanchard G, Maunaye M, Martin G (1984) Removal of heavy metals from waters by means of natural zeolites. Water Res 18:1501–1507

    Article  CAS  Google Scholar 

  33. Lopes EC, dos Anjos FS, Vieira EF, Cestari AR (2003) An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg(II) with thin chitosan membranes. J Colloid Interface Sci 263:542–547

    Article  CAS  PubMed  Google Scholar 

  34. Roginsky S, Zeldovich YB (1934) The catalytic oxidation of carbon monoxide on manganese dioxide. Acta Phys Chem USSR 1(554):20190

    Google Scholar 

  35. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  36. Freundlich HM (1906) Over the adsorption in solution. J Phys Chem A 57:385–470

    CAS  Google Scholar 

  37. Liu YH, Yang SF, Tay JH (2003) A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules. J Biotechnol 102:233–239

    Article  CAS  PubMed  Google Scholar 

  38. Lima DR, Lima EC, Umpierres CS, Thue PS, El-Chaghaby GA, Sanches da Silva R, Pavan FA, Silvio LP, Biron DC (2019) Removal of amoxicillin from simulated hospital effluents by adsorption using activated carbons prepared from capsules of cashew of Para. Environ Sci Pollut Res 26:16396–16408

    Article  CAS  Google Scholar 

  39. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria: wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434

    Article  CAS  Google Scholar 

  40. Atkins P, De Paula J (2010) Physical chemistry, 9th edn. W. H. Freeman and Company, New York

    Google Scholar 

  41. Chang R, Thoman JJW (2014) Physical chemistry for the chemical sciences. University Science Books, Canada

    Google Scholar 

  42. Cardoso NF, Pinto RB, Lima EC, Calvete T, Amavisca CV, Royer B, Cunha ML, Fernandes THM, Pinto IS (2011b) Removal of remazol black B textile dye from aqueous solution by adsorption. Desalination 269:92–103

    Article  CAS  Google Scholar 

  43. Cunha MR, Lima EC, Cimirro NFGM, Thue PS, Dias SLP, Gelesky MA, Dotto GL, Dos Reis GS, Pavan FA (2018) Conversion of Eragrostis plana Nees leaves to activated carbon by microwave assisted pyrolysis for the removal of organic emerging contaminants from aqueous solutions. Environ Sci Pollut Res 25:23315–23327

    Article  CAS  Google Scholar 

  44. Smith B (1999) Infrared spectral interpretation. A systematic approach. CRC Press, Boca Raton

    Google Scholar 

  45. Jan S, Blackburn RS, Thomas B, Jim T, Patrick W (2010) Attenuated total reflectance Fourier-transform infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose 17:103–115

    Article  CAS  Google Scholar 

  46. Nithya E, Radhai R, Rajendran R, Shalini S, Rajendran V, Jayakumar S (2011) Synergetic effect of DC air plasma and cellulase enzyme treatment on the hydrophilicity of cotton fabric. Carbohydr Polym 83:1652–1658

    Article  CAS  Google Scholar 

  47. Rovani S, Censi MT, Pedrotti JSL, Lima EC, Cataluna R, Fernandes AN (2014) Development of a new adsorbent from agro-industrial waste and its potential use in endocrine disruptor compound removal. J Hazard Mater 271:311–320

    Article  CAS  PubMed  Google Scholar 

  48. Saucier C, Adebayo MA, Lima EC, Cataluna R, Thue PS, Prola LDT, Puchana RMJ, Machado FM, Pavan FA, Dotto GL (2015) Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents. J Hazard Mater 289:18–27

    Article  CAS  PubMed  Google Scholar 

  49. Vaghetti JCP, Lima EC, Royer B, da Cunha BM, Cardoso NF, Brasil JL, Dias SLP (2009) Pecan nutshell as biosorbent to remove Cu (II), Mn (II) and Pb (II) from aqueous solutions. J Hazard Mater 162:270–280

    Article  CAS  PubMed  Google Scholar 

  50. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  51. Lva L, Hea J, Wei M, Evansa DG, Duana Y (2006) Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: equilibrium and kinetic studies. Water Res 40:735–743

    Article  CAS  Google Scholar 

  52. Lladó J, Lao-Luque C, Ruiz B, Fuente E, Solé-Sardans M, Dorado AD (2015) Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics. Process Saf Environ Prot 95:51–59

    Article  CAS  Google Scholar 

  53. Juchen PT, Handria HP, Márcia TV, Gilberto da Cunha G, Soraya MP, Jéssica CZ (2018) Biosorption of reactive blue BF-5G dye by malt bagasse: kinetic and equilibrium studies. J Environ Chem Eng 6:7111–7711

    Article  CAS  Google Scholar 

  54. Jauris I, De Matos CF, Saucier C, Lima E, Zarbin AJG, Binoto FS, Machado F, Zanella I (2016) Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study. Phys Chem Chem Phys 18:1526–1536

    Article  CAS  PubMed  Google Scholar 

  55. Behera SK, Oh SY, Park HS (2012) Sorptive removal of ibuprofen from water using selected soil minerals and activated carbon. Int J Environ Sci Technol 9:85–94

    Article  CAS  Google Scholar 

  56. Dubey SP, Dwivedi AD, Sillanpää M, Gopal K (2010) Artemisia vulgaris-derived mesoporous honey comb-shaped activated carbon for ibuprofen adsorption. Chem Eng J 165:537–544

    Article  CAS  Google Scholar 

  57. Baccar R, Sarrà M, Bouzid J, Feki M, Blánquez P (2012) Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem Eng J 211:310–317

    Article  CAS  Google Scholar 

  58. Khadir A, Motamedi M, Negarestani M, Sillanpää M, Sasani M (2020) Preparation of a nano bio-composite based on cellulosic biomass and conducting polymeric nanoparticles for ibuprofen removal: kinetics, isotherms, and energy site distribution. Int J Biol Macromol 162:663–677

    Article  CAS  PubMed  Google Scholar 

  59. Bany-Aiesh H, Banat R, Al-Sou’od V (2015) Kinetics and adsorption isotherm of Ibuprofen onto Grafted β-CD/Chitosan Polymer. Am J Appl Sci 12:917–930

    Article  CAS  Google Scholar 

  60. Khazri H, Ghorbel-Abid I, Kalfat R, Trabelsi-Ayadi M (2017) Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: equilibrium, kinetics, and thermodynamic study. Appl Water Sci 7:3031–3040

    Article  CAS  Google Scholar 

  61. Khadir A, Negarestani M, Ghiasinejad H (2020) Low-cost sisal fibers/polypyrrole/polyaniline biosorbent for sequestration of reactive orange 5 from aqueous solutions. J Environ Chem Eng 8:103956

    Article  CAS  Google Scholar 

  62. Asouhidou DD, Triantafyllidis KS, Lazaridis NK, Matis KA, Kim SS, Pinnavaia TJ (2009) Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons. Microporous Mesoporous Mater 117:257–267

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the International Foundation for Sciences (IFS) (Grant Number: W/4219-1) for the Jenway spectrophotometer granted to Dr. Serge Nzali.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Acayanka Elie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jean-Rameaux, B., Brice, T., Sadou, D. et al. Multi-functionalized Cellulosic Biomass by Plasma-Assisted Bonding of α-Amino Carboxylic Acid to Enhance the Removal of Ibuprofen in Aqueous Solution. J Polym Environ 29, 1176–1191 (2021). https://doi.org/10.1007/s10924-020-01958-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01958-7

Keywords

Navigation