Skip to main content
Log in

Impact of PLA Poly(Lactic Acid) and PBAT Poly(butylene adipate-co-terephthalate) Coating on the Properties of Composites with High Content of Rice Husk

  • Brief Communication
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Composites with high content of rice husk (80% based on the solids weight) without and with PLA (5%) and PBAT (2.5%) coating were produced and characterized. Thickness, morphology, thermal and mechanical properties, water absorption capacity and hydrophilicity were evaluated. The optical microscopy indicated a more uniform surface after double coating with PLA that was confirmed by the iodine test. The modulus of elasticity and deflection were not influenced by the thin layer of PLA. On the other hand, water absorption capacity decreased with both polymers used as coating, but lower values were reached with PLA. All materials presented hydrophobic character (contact angle higher than 90°) when measured instantly, with a small decreased after 5 min. The samples coated only once with PLA or PBAT showed analogous thermograms to the uncoated composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Polat S, Uslu MK, Aygün A, Certel M (2013) The effects of the addition of corn husk fibre, kaolin and beeswax on cross-linked corn starch foam. J Food Eng 116:267–276. https://doi.org/10.1016/j.jfoodeng.2012.12.017

    Article  CAS  Google Scholar 

  2. Sjöqvist M, Boldizar A, Rigdahl M (2010) Processing and water absorption behavior of foamed potato starch. J Cell Plast 46:497–517. https://doi.org/10.1177/0021955X10377802

    Article  CAS  Google Scholar 

  3. Kasemsiri P, Dulsang N, Pongsa U, Hiziroglu S, Chindaprasirt P (2016) Optimization of biodegradable foam composites from cassava starch, oil palm fiber, chitosan and palm oil using Taguchi method and grey relational analysis. J Polym Environ 25:378–390. https://doi.org/10.1007/s10924-016-0818-z

    Article  CAS  Google Scholar 

  4. Uslu M, Polat S (2012) Effects of glyoxal cross-linking on baked starch foam. Carbohydr Polym 87:1994–1999. https://doi.org/10.1016/j.carbpol.2011.10.008

    Article  CAS  Google Scholar 

  5. Marengo VA, Vercelheze AES, Mali S (2013) Compósitos biodegradáveis de amido de mandioca e resíduos da agroindústria. Quim Nova 36:680–685. https://doi.org/10.1590/S0100-40422013000500012

    Article  CAS  Google Scholar 

  6. Spada J, Jasper A, Tessaro I (2019) Biodegradable cassava starch based foams using rice husk waste as macro filler. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-019-00776-w

    Article  Google Scholar 

  7. Kaisangsri N, Kerdchoechuen O, Laohakunjit N (2014) Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydr Polym 110:70–77. https://doi.org/10.1016/j.carbpol.2014.03.067

    Article  CAS  PubMed  Google Scholar 

  8. Nunes SG, da Silva LV, Amico SC, Viana JD, Amado FDR, Nunes SG et al (2016) Study of composites produced with recovered polypropylene and piassava fiber. Mater Res 20:144–150. https://doi.org/10.1590/1980-5373-mr-2016-0659

    Article  CAS  Google Scholar 

  9. Salgado PR, Schmidt VC, Molina Ortiz SE, Mauri AN, Laurindo JB (2008) Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process. J Food Eng 85:435–443. https://doi.org/10.1016/j.jfoodeng.2007.08.005

    Article  CAS  Google Scholar 

  10. Carr LG, Parra DF, Ponce P, Lugão AB, Buchler PM (2006) Influence of fibers on the mechanical properties of cassava starch foams. J Polym Environ 14:179–183. https://doi.org/10.1007/s10924-006-0008-5

    Article  CAS  Google Scholar 

  11. Glenn GM, Orts WJ, Nobes GAR (2001) Starch, fiber and CaCo3 effects on the physical properties of foams made by a baking process. Ind Crops Prod 14:201–212. https://doi.org/10.1016/S0926-6690(01)00085-1

    Article  CAS  Google Scholar 

  12. Andersen PJ, Kumar A, Hodson SK (1999) Inorganically filled starch based fiber reinforced composite foam materials for food packaging. Mater Res Innov 3:2–8. https://doi.org/10.1007/s100190050118

    Article  CAS  Google Scholar 

  13. Vercelheze AES, Fakhouri FM, Dall’Antônia LH, Urbano A, Youssef EY, Yamashita F (2012) Properties of baked foams based on cassava starch, sugarcane bagasse fibers and montmorillonite. Carbohydr Polym 87:1302–1310. https://doi.org/10.1016/j.carbpol.2011.09.016

    Article  CAS  Google Scholar 

  14. Battegazzore D, Alongi J, Duraccio D, Frache A (2018) All natural high-density fiber- and particleboards from hemp fibers or rice husk particles. J Polym Environ 26:1652–1660. https://doi.org/10.1007/s10924-017-1071-9

    Article  CAS  Google Scholar 

  15. Van SL, Minerbe MG, Moscardelli S, Rabii H, Davies P (2018) Antioxidant properties of flax fibers in polyethylene matrix composites. Ind Crops Prod 126:333–339. https://doi.org/10.1016/j.indcrop.2018.09.047

    Article  CAS  Google Scholar 

  16. Mello LRPF, Mali S (2014) Use of malt bagasse to produce biodegradable baked foams made from cassava starch. Ind Crops Prod 55:187–193. https://doi.org/10.1016/j.indcrop.2014.02.015

    Article  CAS  Google Scholar 

  17. Lawton JW, Shogren RL, Tiefenbacher KF (2004) Aspen fiber addition improves the mechanical properties of baked cornstarch foams. Ind Crops Prod 19:41–48. https://doi.org/10.1016/S0926-6690(03)00079-7

    Article  CAS  Google Scholar 

  18. Machado CM, Benelli P, Tessaro IC (2017) Sesame cake incorporation on cassava starch foams for packaging use. Ind Crops Prod 102:115–121. https://doi.org/10.1016/j.indcrop.2017.03.007

    Article  CAS  Google Scholar 

  19. Bénézet J-C, Stanojlovic-Davidovic A, Bergeret A, Ferry L, Crespy A (2012) Mechanical and physical properties of expanded starch, reinforced by natural fibres. Ind Crops Prod 37:435–440. https://doi.org/10.1016/j.indcrop.2011.07.001

    Article  CAS  Google Scholar 

  20. Cruz-Tirado JP, Siche R, Cabanillas A, Díaz-Sánchez L, Vejarano R, Tapia-Blácido DR (2017) Properties of baked foams from oca (Oxalis tuberosa) starch reinforced with sugarcane bagasse and asparagus peel fiber. Procedia Eng 200:178–185. https://doi.org/10.1016/j.proeng.2017.07.026

    Article  CAS  Google Scholar 

  21. Machado CM, Benelli P, Tessaro IC (2019) Constrained mixture design to optimize formulation and performance of foams based on cassava starch and peanut skin. J Polym Environ 27:2224–2238. https://doi.org/10.1007/s10924-019-01518-8

    Article  CAS  Google Scholar 

  22. FAO (2018) FAOSTAT Data 2018. www.fao.org/faostat/en/#home. Accessed 9 Sept 2020

  23. EMBRAPA (2019) EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Embrapa Arroz e Feijão 2019. https://www.cnpaf.embrapa.br/socioeconomia/docs/arroz/desenvolvimentodoarrozefeijao.htm. Accessed 11 Sept 2020

  24. Rhim J-W, Lee J-H, Hong S-I (2007) Increase in water resistance of paperboard by coating with poly(lactide). Packag Technol Sci 20:393–402. https://doi.org/10.1002/pts.767

    Article  CAS  Google Scholar 

  25. Baratter M (2017) Analysis and evaluation of cassava starch-based biodegradable trays as an alternative packaging to fresh strawberry (Fragaria ananassa cv San Andreas). Am J Polym Sci Technol 3:76. https://doi.org/10.11648/j.ajpst.20170304.14

    Article  Google Scholar 

  26. Traina LGC, Ponce P, Lugão AB, Parra DF, Bastos CR (2010) Processo de imeprmeabilização de substratos biodegradáveis. Depositor: Comissão Nacional de Energia Nuclear (BR/RJ)

  27. Shankar S, Rhim J-W (2018) Effects of poly(butylene adipate-co-terephthalate) coating on the water resistant, mechanical, and antibacterial properties of Kraft paper. Prog Org Coat 123:153–159. https://doi.org/10.1016/j.porgcoat.2018.07.002

    Article  CAS  Google Scholar 

  28. Schmidt V, Laurindo J (2010) Characterization of foams obtained from cassava starch, cellulose fibres and dolomitic limestone by a thermopressing process. Braz Arch Biol Technol. https://doi.org/10.1590/S1516-89132010000100023

    Article  Google Scholar 

  29. ABNT - Associação Brasileira de Normas Técnicas (1999) Papel e cartão: Determinação da capacidade de absorção de água - Método de Cobb; NBR NM ISO 535:1999

  30. ASTM - American Society for Testing and Materials (2002) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. vol. 14

  31. Lima B, Cabral T, Cucinelli R, Tavares MI, Pierucci AP (2011) Characterization of commercial edible starch flours. Polímeros 22:486–490

    Article  Google Scholar 

  32. Alias N, Ibrahim N, Abd Hamid MK (2014) Thermogravimetric analysis of rice husk and coconut pulp for potential biofuel production by flash pyrolysis. https://doi.org/10.13140/2.1.1181.3760

  33. Brebu M, Vasile C (2010) Thermal degradation of lignin—a review. Cell Chem Technol 44:353–363

    CAS  Google Scholar 

  34. Rassiah K, Sin T, Ismail MZ (2016) A study on flexural and water absorption of surface modified rice husk flour/E-glass/polypropylene hybrid composite. OP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/152/1/012061

    Article  Google Scholar 

  35. Stoffel F, Weschenfelder EF, Piemolini-Barreto LT, Zeni M (2017) Avaliação da resistência à umidade de bandejas de espuma de amido de mandioca revestidas com poli(ácido lático). Rev Iberoam Polímeros 18:238–247

    Google Scholar 

  36. Rhim J-W, Hong S-I, Ha C-S (2009) Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT Food Sci Technol 42:612–617. https://doi.org/10.1016/j.lwt.2008.02.015

    Article  CAS  Google Scholar 

  37. Chindaprasirt P, Kanchanda P, Sathonsaowaphak A, Cao HT (2007) Sulfate resistance of blended cements containing fly ash and rice husk ash. Constr Build Mater 21:1356–1361

    Article  Google Scholar 

  38. Mansaray KG, Ghaly AE (1998) Physical and thermochemical properties of rice husk. Energy Sources A 19:989–1004

    Article  Google Scholar 

  39. Bergel BF, da Luz LM, Santana RMC (2018) Effect of poly(lactic acid) coating on mechanical and physical properties of thermoplastic starch foams from potato starch. Prog Org Coat 118:91–96. https://doi.org/10.1016/j.porgcoat.2018.01.029

    Article  CAS  Google Scholar 

  40. Debiagi F, Kobayashi RKT, Nakazato G, Panagio LA, Mali S (2014) Biodegradable active packaging based on cassava bagasse, polyvinyl alcohol and essential oils. Ind Crops Prod 52:664–670. https://doi.org/10.1016/j.indcrop.2013.11.032

    Article  CAS  Google Scholar 

  41. Davachi SM, Bakhtiari S, Pouresmaeel-Selakjani P, Mohammadi-Rovshandeh J, Kaffashi B, Davoodi S et al (2018) Investigating the effect of treated rice straw in PLLA/starch composite: mechanical, thermal, rheological, and morphological study. Adv Polym Technol 37:5–16. https://doi.org/10.1002/adv.21634

    Article  CAS  Google Scholar 

  42. Lin Q, Zhou X, Dai G (2002) Effect of hydrothermal environment on moisture absorption and mechanical properties of wood flour-filled polypropylene composites. J Appl Polym Sci 85:2824–2832

    Article  CAS  Google Scholar 

  43. Rozman HD, Yeo YS, Tay GS, Abubakar A (2003) The mechanical and physical properties of polyurethane composites based on rice husk and polyethylene glycol. Polym Test 22:617–623. https://doi.org/10.1016/S0142-9418(02)00165-4

    Article  CAS  Google Scholar 

  44. Razavi-Nouri M, Jafarzadeh-Dogouri F, Oromiehie A, Langroudi AE (2006) Mechanical properties and water absorption behavior of chopped rice husk filled polypropylene composites. Iran Polym J 15:757–766

    CAS  Google Scholar 

  45. Rhim J-W, Lee JH, Ng PKW (2007) Mechanical and barrier properties of biodegradable soy protein isolate-based films coated with polylactic acid. LWT Food Sci Technol 40:232–238. https://doi.org/10.1016/j.lwt.2005.10.002

    Article  CAS  Google Scholar 

  46. Zhang H, Bussini D, Hortal M, Elegir G, Mendes J, Jorda BM (2016) PLA coated paper containing active inorganic nanoparticles: material characterization and fate of nanoparticles in the paper recycling process. Waste Manag. https://doi.org/10.1016/j.wasman.2016.03.045

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from CAPES (Coordenadoria de Aperfeiçoamento de Pessoal para o Ensino Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordana Corralo Spada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spada, J.C., Seibert, S.F. & Tessaro, I.C. Impact of PLA Poly(Lactic Acid) and PBAT Poly(butylene adipate-co-terephthalate) Coating on the Properties of Composites with High Content of Rice Husk. J Polym Environ 29, 1324–1331 (2021). https://doi.org/10.1007/s10924-020-01957-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01957-8

Keywords

Navigation