Skip to main content
Log in

Degradation of Styrenic Plastics During Recycling: Impact of Reprocessing Photodegraded Material on Aspect and Mechanical Properties

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The major technical limitations in polymer recycling are their incompatibility between each other and their ageing. In this study, impact reinforced styrenics, namely HIPS and ABS, were evaluated in the scope of their alterations through recycling photooxidized material. In this purpose, plates were photodegraded in both natural and accelerated conditions. FTIR-ATR was used to monitor their ageing. After the desired ageing durations, plates were ground, extruded and injected into ISO1 dumbbell tensile test specimens to simulate recycling of degraded polymers. Strong interactions were observed between photooxidation and polymer processing through photometry measures, associated color changes, tensile and impact properties. It was noticed that unaged materials displayed only moderated alterations through recycling. Because of their close chemistry, HIPS and ABS share several modifications but ABS was less altered and mainly impact properties were affected. HIPS and ABS difference of sensibilities could be rooted in PB phases different morphologies and grafting between the two materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

adapted from literature

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

ABS:

Acrylonitrile butadiene styrene

Aext:

Reextruded samples from accelerated ageing

AN:

Acrylonitrile

ASA:

Acrylonitrile styrene acrylic rubber

ATR:

Attenuated total reflection

CRI:

Color Rendering Index

CRT:

Cathodic ray tube

FTIR:

Fourier transform infrared

GPPS:

General purpose polystyrene

HIPS:

High impact polystyrene

LED:

Light-emitting diodes

Next:

Reextruded samples from natural ageing

NIR-HSI:

Near-infrared hyperspectral imagery

PB:

Polybutadiene

PS:

Polystyrene

SAN:

Styrene acrylonitrile

V:

Virgin samples

Vext:

Reextruded unaged samples

UV:

Ultraviolet

WEEE or W3E:

Waste of electrical and electronic equipment

WEEP:

WEEE plastics

References

  1. Robinson BH (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408:183–191. https://doi.org/10.1016/j.scitotenv.2009.09.044

    Article  CAS  PubMed  Google Scholar 

  2. (2020) Earth Overshoot Day. In: Glob. Footpr. Netw. https://www.overshootday.org. Accessed 5 Mar 2020

  3. Awasthi AK, Li J (2017) Management of electrical and electronic waste: A comparative evaluation of China and India. Renew Sustain Energy Rev 76:434–447. https://doi.org/10.1016/j.rser.2017.02.067

    Article  Google Scholar 

  4. Salhofer S, Steuer B, Ramusch R, Beigl P (2016) WEEE management in Europe and China—a comparison. Waste Manag 57:27–35. https://doi.org/10.1016/j.wasman.2015.11.014

    Article  CAS  PubMed  Google Scholar 

  5. Kalmykova Y, Patrício J, Rosado L, Berg PEO (2015) Out with the old, out with the new—the effect of transitions in TVs and monitors technology on consumption and WEEE generation in Sweden 1996–2014. Waste Manag 46:511–522. https://doi.org/10.1016/j.wasman.2015.08.034

    Article  PubMed  Google Scholar 

  6. Bovea MD, Ibáñez-Forés V, Pérez-Belis V, Quemades-Beltrán P (2016) Potential reuse of small household waste electrical and electronic equipment: methodology and case study. Waste Manag 53:204–217. https://doi.org/10.1016/j.wasman.2016.03.038

    Article  PubMed  Google Scholar 

  7. Lu B, Li B, Wang L et al (2014) Reusability based on Life Cycle Sustainability Assessment: case study on WEEE. Procedia CIRP 15:473–478. https://doi.org/10.1016/j.procir.2014.06.046

    Article  Google Scholar 

  8. Zlamparet GI, Ijomah W, Miao Y et al (2017) Remanufacturing strategies: a solution for WEEE problem. J Clean Prod 149:126–136. https://doi.org/10.1016/j.jclepro.2017.02.004

    Article  Google Scholar 

  9. Quariguasi-Frota-Neto J, Bloemhof J (2012) An analysis of the eco-efficiency of remanufactured personal computers and mobile phones. Prod Oper Manag 21:101–114. https://doi.org/10.1111/j.1937-5956.2011.01234.x

    Article  Google Scholar 

  10. Javadi Y, Hosseini MS, Aghjeh MKR (2014) The effect of carbon black and HALS hybrid systems on the UV stability of high-density polyethylene (HDPE). Iran Polym J 23:793–799. https://doi.org/10.1007/s13726-014-0275-2

    Article  CAS  Google Scholar 

  11. Liu M, Horrocks A (2002) Effect of Carbon Black on UV stability of LLDPE films under artificial weathering conditions. Polym Degrad Stab 75:485–499. https://doi.org/10.1016/S0141-3910(01)00252-X

    Article  CAS  Google Scholar 

  12. Jouan X, Gardette JL (1992) Photo-oxidation of ABS: Part 2—origin of the photodiscoloration on irradiation at long wavelengths. Polym Degrad Stab 36:91–96. https://doi.org/10.1016/0141-3910(92)90054-9

    Article  CAS  Google Scholar 

  13. Serranti S, Luciani V, Bonifazi G et al (2015) An innovative recycling process to obtain pure polyethylene and polypropylene from household waste. Waste Manag 35:12–20. https://doi.org/10.1016/j.wasman.2014.10.017

    Article  CAS  PubMed  Google Scholar 

  14. Beigbeder J, Perrin D, Mascaro J-F, Lopez-Cuesta J-M (2013) Study of the physico-chemical properties of recycled polymers from waste electrical and electronic equipment (WEEE) sorted by high resolution near infrared devices. Resour Conserv Recycl 78:105–114. https://doi.org/10.1016/j.resconrec.2013.07.006

    Article  Google Scholar 

  15. Perrin D, Mantaux O, Ienny P et al (2016) Influence of impurities on the performances of HIPS recycled from Waste Electric and Electronic Equipment (WEEE). Waste Manag 56:438–445. https://doi.org/10.1016/j.wasman.2016.07.014

    Article  CAS  PubMed  Google Scholar 

  16. Vilaplana F, Karlsson S (2008) Quality concepts for the improved use of recycled polymeric materials: a review. Macromol Mater Eng 293:274–297. https://doi.org/10.1002/mame.200700393

    Article  CAS  Google Scholar 

  17. Brunner S, Fomin P, Kargel C (2015) Automated sorting of polymer flakes: fluorescence labeling and development of a measurement system prototype. Waste Manag 38:49–60. https://doi.org/10.1016/j.wasman.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  18. Wang C, Wang H, Fu J, Liu Y (2015) Flotation separation of waste plastics for recycling—a review. Waste Manag 41:28–38. https://doi.org/10.1016/j.wasman.2015.03.027

    Article  CAS  PubMed  Google Scholar 

  19. Langhals H, Zgela D, Schlücker T (2014) High performance recycling of polymers by means of their fluorescence lifetimes. Green Sustain Chem 04:144–150. https://doi.org/10.4236/gsc.2014.43019

    Article  CAS  Google Scholar 

  20. Roh S-B, Oh S-K, Park E-K, Choi WZ (2017) Identification of black plastics realized with the aid of Raman spectroscopy and fuzzy radial basis function neural networks classifier. J Mater Cycles Waste Manag 19:1093–1105. https://doi.org/10.1007/s10163-017-0620-6

    Article  CAS  Google Scholar 

  21. Huang J, Tian C, Ren J, Bian Z (2017) Study on impact acoustic—visual sensor-based sorting of ELV plastic materials. Sensors 17:1325. https://doi.org/10.3390/s17061325

    Article  Google Scholar 

  22. Costa VC, Aquino FWB, Paranhos CM, Pereira-Filho ER (2017) Identification and classification of polymer e-waste using laser-induced breakdown spectroscopy (LIBS) and chemometric tools. Polym Test 59:390–395. https://doi.org/10.1016/j.polymertesting.2017.02.017

    Article  CAS  Google Scholar 

  23. Barbier S, Perrier S, Freyermuth P et al (2013) Plastic identification based on molecular and elemental information from laser induced breakdown spectra: a comparison of plasma conditions in view of efficient sorting. Spectrochim Acta Part B 88:167–173. https://doi.org/10.1016/j.sab.2013.06.007

    Article  CAS  Google Scholar 

  24. Küter A, Reible S, Geibig T et al (2018) THz imaging for recycling of black plastics. Tech Mess 85:191–201. https://doi.org/10.1515/teme-2017-0062

    Article  Google Scholar 

  25. Maris E, Botané P, Wavrer P, Froelich D (2015) Characterizing plastics originating from WEEE: a case study in France. Miner Eng 76:28–37. https://doi.org/10.1016/j.mineng.2014.12.034

    Article  CAS  Google Scholar 

  26. Martinho G, Pires A, Saraiva L, Ribeiro R (2012) Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling. Waste Manag 32:1213–1217. https://doi.org/10.1016/j.wasman.2012.02.010

    Article  CAS  PubMed  Google Scholar 

  27. Peeters JR, Vanegas P, Kellens K et al (2015) Forecasting waste compositions: a case study on plastic waste of electronic display housings. Waste Manag 46:28–39. https://doi.org/10.1016/j.wasman.2015.09.019

    Article  PubMed  Google Scholar 

  28. Stenvall E, Tostar S, Boldizar A et al (2013) An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE). Waste Manag 33:915–922. https://doi.org/10.1016/j.wasman.2012.12.022

    Article  CAS  PubMed  Google Scholar 

  29. Han Y, Lach R, Grellmann W (1999) The Charpy impact fracture behaviour in ABS materials. Die Angew Makromol Chem 270:13–21. https://doi.org/10.1002/(SICI)1522-9505(19990901)270:1%3c13:AID-APMC13%3e3.0.CO;2-P

    Article  CAS  Google Scholar 

  30. Hirayama D, Saron C (2018) Morphologic and mechanical properties of blends from recycled acrylonitrile-butadiene-styrene and high-impact polystyrene. Polymer (United Kingdom) 135:271–278. https://doi.org/10.1016/j.polymer.2017.12.038

    Article  CAS  Google Scholar 

  31. Mercier JP, Maréchal E (1996) Chimie des polymères: synthèses, réactions, dégradations, 1st edn. Presses Polytechniques et Universitaires Romandes, Lausanne

    Google Scholar 

  32. Moore J (1973) Acrylonitrile-butadiene-styrene (ABS)—a review. Composites 4:118–130. https://doi.org/10.1016/0010-4361(73)90585-5

    Article  CAS  Google Scholar 

  33. Utracki LA (1998) Commercial polymer blends. Springer, Boston

    Book  Google Scholar 

  34. Maestrini C, Pisoni K, Kausch HH (1996) On the elastic properties of rubber toughened Styrenics. J Mater Sci 31:3249–3257. https://doi.org/10.1007/BF00354676

    Article  CAS  Google Scholar 

  35. Wypych G (2016) ABS poly(acrylonitrile-co-butadiene-co-styrene). Handbook of Polymers, pp 5–11

  36. Alfarraj A, Bruce Nauman E (2004) Super HIPS: improved high impact polystyrene with two sources of rubber particles. Polymer (Guildf) 45:8435–8442. https://doi.org/10.1016/j.polymer.2004.10.005

    Article  CAS  Google Scholar 

  37. Shimada J, Kabuki K (1968) The mechanism of oxidative degradation of ABS resin. Part II. The mechanism of photooxidative degradation. J Appl Polym Sci 12:671–682. https://doi.org/10.1002/app.1968.070120406

    Article  CAS  Google Scholar 

  38. Vilaplana F, Karlsson S, Ribes-Greus A et al (2011) NMR relaxation reveals modifications in rubber phase dynamics during long-term degradation of high-impact polystyrene (HIPS). Polymer (Guildf) 52:1410–1416. https://doi.org/10.1016/j.polymer.2011.02.005

    Article  CAS  Google Scholar 

  39. Tolue S, Moghbeli MR, Ghafelebashi SM (2009) Preparation of ASA (acrylonitrile-styrene-acrylate) structural latexes via seeded emulsion polymerization. Eur Polym J 45:714–720. https://doi.org/10.1016/j.eurpolymj.2008.12.014

    Article  CAS  Google Scholar 

  40. Davis A, Gordon D (1974) Rapid assessment of weathering stability from exposure of polymer films. II. The effectiveness of different regions of the solar spectrum in degrading an ABS terpolymer. J Appl Polym Sci 18:1173–1179. https://doi.org/10.1002/app.1974.070180415

    Article  CAS  Google Scholar 

  41. Jouan X, Gardette J-L (1991) Photooxidation of ABS at long-wavelengths. J Polym Sci Part A 29:685–696. https://doi.org/10.1002/pola.1991.080290510

    Article  CAS  Google Scholar 

  42. Gardette J-L, Mailhot B, Lemaire J (1995) Photooxidation mechanisms of styrenic polymers. Polym Degrad Stab 48:457–470. https://doi.org/10.1016/0141-3910(95)00113-Z

    Article  CAS  Google Scholar 

  43. Saviello D, Pouyet E, Toniolo L et al (2014) Synchrotron-based FTIR microspectroscopy for the mapping of photo-oxidation and additives in acrylonitrile–butadiene–styrene model samples and historical objects. Anal Chim Acta 843:59–72. https://doi.org/10.1016/j.aca.2014.07.021

    Article  CAS  PubMed  Google Scholar 

  44. Mailhot B, Gardette J-L (1994) Mechanism of poly(styrene-co-acrylonitrile) photooxidation. Polym Degrad Stab 44:237–247. https://doi.org/10.1016/0141-3910(94)90168-6

    Article  CAS  Google Scholar 

  45. Tiganis B, Burn L, Davis P, Hill A (2002) Thermal degradation of acrylonitrile–butadiene–styrene (ABS) blends. Polym Degrad Stab 76:425–434. https://doi.org/10.1016/S0141-3910(02)00045-9

    Article  CAS  Google Scholar 

  46. Wang B, Zhao K, Zhang Y et al (2018) Influence of aging conditions on the mechanical properties and flame retardancy of HIPS composites. J Appl Polym Sci 135:46339. https://doi.org/10.1002/app.46339

    Article  CAS  Google Scholar 

  47. Vilaplana F, Ribes-Greus A, Karlsson S (2006) Degradation of recycled high-impact polystyrene. Simulation by reprocessing and thermo-oxidation. Polym Degrad Stab 91:2163–2170. https://doi.org/10.1016/j.polymdegradstab.2006.01.007

    Article  CAS  Google Scholar 

  48. Pérez JM, Vilas JL, Laza JM et al (2010) Effect of reprocessing and accelerated weathering on ABS properties. J Polym Environ 18:71–78. https://doi.org/10.1007/s10924-009-0154-7

    Article  CAS  Google Scholar 

  49. La Mantia F, Gardette J (2002) Improvement of the mechanical properties of photo-oxidized films after recycling. Polym Degrad Stab 75:1–7. https://doi.org/10.1016/S0141-3910(01)00199-9

    Article  Google Scholar 

  50. Soccalingame L, Perrin D, Bénézet J-C et al (2015) Reprocessing of artificial UV-weathered wood flour reinforced polypropylene composites. Polym Degrad Stab 120:313–327. https://doi.org/10.1016/j.polymdegradstab.2015.07.013

    Article  CAS  Google Scholar 

  51. Soccalingame L, Perrin D, Bénézet J-C, Bergeret A (2016) Reprocessing of UV-weathered wood flour reinforced polypropylene composites: study of a natural outdoor exposure. Polym Degrad Stab 133:389–398. https://doi.org/10.1016/j.polymdegradstab.2016.09.011

    Article  CAS  Google Scholar 

  52. Pfaendner R, Herbst H, Hoffmann K, Sitek F (1995) Recycling and restabilization of polymers for high quality applications: an overview. Die Angew Makromol Chem 232:193–227. https://doi.org/10.1002/apmc.1995.052320113

    Article  CAS  Google Scholar 

  53. Pfaendner R, Herbst H, Hoffmann K (1998) Innovative concept for the upgrading of recyclates by restabilization and repair molecules. Macromol Symp 135:97–111. https://doi.org/10.1002/masy.19981350112

    Article  CAS  Google Scholar 

  54. Kiliaris P, Papaspyrides CD, Pfaendner R (2007) Reactive-extrusion route for the closed-loop recycling of poly(ethylene terephthalate). J Appl Polym Sci 104:1671–1678. https://doi.org/10.1002/app.25795

    Article  CAS  Google Scholar 

  55. Kartalis C, Papaspyrides C, Pfaendner R (2000) Recycling of post-used PE packaging film using the restabilization technique. Polym Degrad Stab 70:189–197. https://doi.org/10.1016/S0141-3910(00)00106-3

    Article  CAS  Google Scholar 

  56. Tsenoglou CJ, Kartalis CN, Papaspyrides CD, Pfaendner R (2002) Restabilization of recycled, CaCO3-filled polypropylene: assessment of reprocessing induced modifications and processing stabilizer effectiveness. Adv Polym Technol 21:260–267. https://doi.org/10.1002/adv.10026

    Article  CAS  Google Scholar 

  57. Kartalis CN, Papaspyrides CD, Pfaendner R et al (2000) Mechanical recycling of post-used HDPE crates using the restabilization technique. II: Influence of artificial weathering. J Appl Polym Sci 77:1118–1127. https://doi.org/10.1002/1097-4628(20000801)77:5%3c1118:AID-APP20%3e3.3.CO;2-A

    Article  CAS  Google Scholar 

  58. Craig IH, White JR (2006) Mechanical properties of photo-degraded recycled photo-degraded polyolefins. J Mater Sci 41:993–1006. https://doi.org/10.1007/s10853-006-6596-6

    Article  CAS  Google Scholar 

  59. Luzuriaga S, Kovářová J, Fortelný I (2006) Degradation of pre-aged polymers exposed to simulated recycling: properties and thermal stability. Polym Degrad Stab 91:1226–1232. https://doi.org/10.1016/j.polymdegradstab.2005.09.004

    Article  CAS  Google Scholar 

  60. Boldizar A, Möller K (2003) Degradation of ABS during repeated processing and accelerated ageing. Polym Degrad Stab 81:359–366. https://doi.org/10.1016/S0141-3910(03)00107-1

    Article  CAS  Google Scholar 

  61. Stenvall E (2013) Electronic waste plastics characterisation and recycling by melt-processing. Chalmers University of Technology, Göteborg

    Google Scholar 

  62. Hygro Button—The smallest temperature and humidity logger in the world ! In: Proges Plus. https://www.proges.com/en/plug-and-track/temperature-data-loggers/hygro-button-temperature-and-humidity-logger.html. Accessed 14 Feb 2019

  63. QUV Accelerated Weathering Tester. In: Q-LAB. https://www.q-lab.com/products/quv-weathering-tester/quv. Accessed 14 Feb 2019

  64. Pickett JE, Gibson DA, Gardner MM (2008) Effects of irradiation conditions on the weathering of engineering thermoplastics. Polym Degrad Stab 93:1597–1606. https://doi.org/10.1016/j.polymdegradstab.2008.02.009

    Article  CAS  Google Scholar 

  65. Wyszecki G, Stiles WS (2000) Color science: concepts and methods, quantitative data and formulae, 2nd edn. Wiley, New York

    Google Scholar 

  66. Alassali A, Fiore S, Kuchta K (2018) Assessment of plastic waste materials degradation through near infrared spectroscopy. Waste Manag 82:71–81. https://doi.org/10.1016/j.wasman.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  67. Santos RM, Botelho GL, Machado AV (2010) Artificial and natural weathering of ABS. J Appl Polym Sci 21:2005–2014. https://doi.org/10.1002/app.31663

    Article  CAS  Google Scholar 

  68. Santos RM, Botelho GL, Cramez C, Machado AV (2013) Outdoor and accelerated weathering of acrylonitrile-butadiene-styrene: a correlation study. Polym Degrad Stab 98:2111–2115. https://doi.org/10.1016/j.polymdegradstab.2013.07.016

    Article  CAS  Google Scholar 

  69. Scaffaro R, Maio A (2019) Influence of oxidation level of graphene oxide on the mechanical performance and photo-oxidation resistance of a polyamide 6. Polymers (Basel) 11:857. https://doi.org/10.3390/polym11050857

    Article  CAS  Google Scholar 

  70. Xingzhou H, Zubo L (1995) Wavelength sensitivity of photooxidation of styrene-butadiene-styrene copolymer. Polym Degrad Stab 48:99–102. https://doi.org/10.1016/0141-3910(95)00011-A

    Article  Google Scholar 

  71. Searle ND, Maecker NL, Crewdson LFE (1989) Wavelength sensitivity of acrylonitrile–butadiene–styrene. J Polym Sci Part A 27:1341–1357. https://doi.org/10.1002/pola.1989.080270418

    Article  CAS  Google Scholar 

  72. Arráez FJ, Arnal ML, Müller AJ (2018) Thermal degradation of high-impact polystyrene with pro-oxidant additives. Polym Bull. https://doi.org/10.1007/s00289-018-2453-4

    Article  Google Scholar 

  73. Mylläri V, Ruoko T-PP, Syrjälä S (2015) A comparison of rheology and FTIR in the study of polypropylene and polystyrene photodegradation. J Appl Polym Sci. https://doi.org/10.1002/app.42246

    Article  Google Scholar 

  74. Birchmeier M, Priddy DB, Smith PB et al (2005) Thermal styrene-co-acrylonitrile discoloration problem: the role of sequence distribution and oligomers. Macromolecules 26:6068–6075. https://doi.org/10.1021/ma00074a030

    Article  Google Scholar 

  75. Audouin L, Langlois V, Verdu J, de Bruijn JCM (1994) Role of oxygen diffusion in polymer ageing: kinetic and mechanical aspects. J Mater Sci 29:569–583. https://doi.org/10.1007/BF00445968

    Article  CAS  Google Scholar 

  76. Kuvshinnikova O, Boven G, Pickett JE (2019) Weathering of aromatic engineering thermoplastics: comparison of outdoor and xenon arc exposures. Polym Degrad Stab 160:177–194. https://doi.org/10.1016/j.polymdegradstab.2018.12.011

    Article  CAS  Google Scholar 

  77. Hirschler R (2016) Whiteness, Yellowness, and Browning in Food Colorimetry. In: Caivano JL, del Pilar BM (eds) Color in food: technological and psychophysical aspects, 1st edn. CRC Press, Boca Raton, pp 93–103

    Google Scholar 

  78. Achtioui T, Lacoste C, Le Baillif M, Erre D (2018) Prediction of the yellowing of styrene-stat-acrylonitrile and acrylonitrile-butadiene-styrene during processing in an internal mixer. J Polym Eng 38:983–993. https://doi.org/10.1515/polyeng-2017-0305

    Article  CAS  Google Scholar 

  79. Bai X, Isaac DH, Smith K (2007) Reprocessing acrylonitrile–butadiene–styrene plastics: Structure–property relationships. Polym Eng Sci 47:120–130. https://doi.org/10.1002/pen.20681

    Article  CAS  Google Scholar 

  80. Karahaliou E-K, Tarantili PA (2009) Stability of ABS compounds subjected to repeated cycles of extrusion processing. Polym Eng Sci 49:2269–2275. https://doi.org/10.1002/pen.21480

    Article  CAS  Google Scholar 

  81. Şahin T, Sınmazçelik T, Şahin Ş (2007) The effect of natural weathering on the mechanical, morphological and thermal properties of high impact polystyrene (HIPS). Mater Des 28:2303–2309. https://doi.org/10.1016/j.matdes.2006.07.013

    Article  CAS  Google Scholar 

  82. Bottino FA, Cinquegrani AR, Di Pasquale G et al (2004) Chemical modifications, mechanical properties and surface photo-oxidation of films of polystyrene (PS). Polym Test 23:405–411. https://doi.org/10.1016/j.polymertesting.2003.10.001

    Article  CAS  Google Scholar 

  83. Brennan LB, Isaac DH, Arnold JC (2002) Recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment. J Appl Polym Sci 86:572–578. https://doi.org/10.1002/app.10833

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Benjamin Gallard, Robert Lorquet, Alexandre Cheron, Romain Ravel and Alain Diaz for technical support, respectively for polymer processing, spectroscopy, mechanical and rheological testing, accelerated ageing and handiwork. Pierre-Alain Ayral, Brahim Mazian and Jean-Francois Didon-Lescotthe from the Saint-Christol-lez-Alès weather station for their support in meteorological monitoring. Solange Madec, Danièle Larroze, Lydie Baroni and Sylvie Beuhorry are acknowledged for administrative support. Pellenc ST and Suez are gratefully acknowledged for partnership in this work.

Funding

This work was supported by BPI France via the FUI 20 (Fonds Unique Interministériel) grant and Suez internship funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Perrin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figs. 21, 22, 23, and 24.

Fig. 21
figure 21

Relative humidity and rain monitoring on natural ageing period—purple arrows correspond to ageing durations for mechanical recycling

Fig. 22
figure 22

Tensile tests curves—ISO 527, 10 mm/min—accelerated and natural ageing—5 specimens/batch for HIPS, 10 for ABS

Fig. 23
figure 23

Notched Charpy impact tests curves—ISO 179 1eA—HIPS & ABS—accelerated and natural ageing—5 specimens/batch

Fig. 24
figure 24

Unnotched Charpy impact tests curves—ISO 179 1eA—accelerated and natural ageing—10 specimens/batch for HIPS, 5 for ABS

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Signoret, C., Edo, M., Lafon, D. et al. Degradation of Styrenic Plastics During Recycling: Impact of Reprocessing Photodegraded Material on Aspect and Mechanical Properties. J Polym Environ 28, 2055–2077 (2020). https://doi.org/10.1007/s10924-020-01741-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01741-8

Keywords

Navigation