Skip to main content
Log in

New, Environment Friendly Approach for Synthesis of Amphiphilic PCL–PEG–PCL Triblock Copolymer: An Efficient Carrier for Fabrication of Nanomicelles

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Ring opening copolymerization is the most frequently applied reaction for the synthesis of polycaprolactone–polyethylene glycol–polycaprolactone (PCL–PEG–PCL). In this reaction, a number of expensive and toxic organic solvents are being used for the purpose of purification and extraction of the prepared copolymer. Exposure to these organic solvents can cause serious issues to the human health and also impart serious environmental pollution. In the current work, a new, economical and organic solvent free approach was used for the synthesis of triblock copolymer. The results of the current studies confirmed the successful formation of triblock copolymer as revealed by Fourier transform infrared spectra, 13carbon nuclear magnetic resonance (13C-NMR) and proton nuclear magnetic resonance (1H-NMR). Gel permeation chromatography analysis ensured the homo-distribution of the prepared copolymer. The prepared copolymer was further evaluated as a carrier for the drug loading. Nanomicelles were successfully prepared by the nanoprecipitation technique and exhibited an average size distribution of 42.50 nm and an encapsulation efficiency of 90%. The prepared nanomicelles also exhibited safety at the concentration of 50 µg/ml and a long-term storage stability. All these studies suggested the success of the new simplest and economical method for the synthesis of PCL–PEG–PCL and its subsequent applications as a carrier for fabrication and efficient delivery of hydrophobic drug molecules.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cabral H, Miyata K, Osada K, Kataoka K (2018) Chem Rev 14:6844–6892

    Google Scholar 

  2. Youn YS, Bae YH (2018) Adv Drug Deliv Rev 130:3–11

    CAS  PubMed  Google Scholar 

  3. Hacker MC, Krieghoff J, Mikos AG (2019) Synthetic polymers. In: Principles of regenerative medicine. Elsevier, New York

    Google Scholar 

  4. Cheng H (2012) An overview of degradable polymers. Degradable polymers and materials: principles and practice. ACS, Washington, DC

    Google Scholar 

  5. Terzopoulou Z, Klonos PA, Kyritsis A, Tziolas A, Avgeropoulos A, Papageorgiou GZ, Bikiaris DN (2019) Polymer 11:1–12

    Google Scholar 

  6. Ganipineni LP, Ucakar B, Joudiou N, Bianco J, Danhier P, Zhao M, Bastiancich C, Gallez B, Danhier F, Preat V (2018) Int J Nanomed 13:4509–4521

    CAS  Google Scholar 

  7. Badri W, El Asbahani A, Miladi K, Baraket A, Agusti G, Nazari QA, Errachid A, Fessi H, Elaissari A (2018) J Drug Deliv Sci Technol 3:234–242

    Google Scholar 

  8. Gupta B, Revagade N, Hilborn J (2007) Prog Polym Sci 4:455–482

    Google Scholar 

  9. Guarino V, Gentile G, Sorrentino L, Ambrosio L (2002) EPST 5:1–36

    Google Scholar 

  10. Azevedo M, Reis R, Claase M, Grijpma DW, Feijen J (2003) J Materials Sci Mater Med 2:103–107

    Google Scholar 

  11. Qindeel M, Ahmed N, Khan GM, Rehman AU (2019) Nanomedicine 14:1–20

    Google Scholar 

  12. Sabir F, Asad MI, Qindeel M, Afzal I, Dar MJ, Shah KU, Zeb A, Khan GM, Ahmed N, Din F-U (2019) J Nanomater 2019:1–16

    Google Scholar 

  13. Veronese FM (2005) Pasut G 21:1451–1458

    Google Scholar 

  14. Bunker A (2012) Phys Procedia 34:24–33

    Google Scholar 

  15. Bailon P, Won C-Y (2009) Expert Opin Drug Deliv 1:1–16

    Google Scholar 

  16. Lipka J, Semmler-Behnke M, Sperling RA, Wenk A, Takenaka S, Schleh C, Kissel T, Parak WJ, Kreyling WG (2010) Biomaterials 25:6574–6581

    Google Scholar 

  17. Gong C, Wei X, Wang X, Wang Y, Guo G, Mao Y, Luo F, Qian Z (2010) Nanotechnology 21:215103

    PubMed  Google Scholar 

  18. Gong C, Shi S, Dong P, Kan B, Gou M, Wang X, Li X, Luo F, Zhao X, Wei Y (2009) Int J Pharm 1–2:89–99

    Google Scholar 

  19. Feng R, Song Z, Zhai G (2012) Int J Nanomed 7:4089

    CAS  Google Scholar 

  20. Pazarceviren E, Erdemli O, Keskin D, Tezcaner A (2017) J Biomater Appl 8:1148–1168

    Google Scholar 

  21. Mohanty AK, Jana U, Manna PK, Mohanta GP (2015) Prog Biomater 2–4:89–100

    Google Scholar 

  22. Zhou S, Deng X, Yang H (2003) Biomaterials 20:3563–3570

    Google Scholar 

  23. Pereira ADF, Pereira LGR, Barbosa LADO, Fialho SL, Pereira BG, Patricio PSDO, Pinto FCH, Da Silva GR (2013) Drug Deliv 3–4:168–179

    Google Scholar 

  24. Rostamizadeh K, Manafi M, Nosrati H, Manjili HK, Danafar H (2018) New J Chem 8:5937–5945

    Google Scholar 

  25. Zhang Y, Zhuo R (2005) Biomaterials 33:6736–6742

    Google Scholar 

  26. Liu CB, Gong CY, Huang MJ, Wang JW, Pan YF, Zhang YD, Li GZ, Gou ML, Wang K, Tu MJ (2008) J Biomed Mater Res B 1:165–175

    Google Scholar 

  27. Li R, Li X, Xie L, Ding D, Hu Y, Qian X, Yu L, Ding Y, Jiang X, Liu B (2009) Int J Pharm 1:158–166

    Google Scholar 

  28. Baker EL (1988) Annu Rev Public Health 1:223–232

    Google Scholar 

  29. Dick FD (2006) Occup Environ Med 3:221–226

    Google Scholar 

  30. Spencer PS, Schaumburg HH (1985) Scand J Work Environ Health 21:53–60

    Google Scholar 

  31. Seedorff L, Olsen E (1990) Ann Occup Hyg 4:371–378

    Google Scholar 

  32. Huang J, Kato K, Shibata E, Asaeda N, Takeuchi Y (1994) Nerve-specific marker proteins as indicators of organic solvent neurotoxicity. In Neurobehavioral methods and effects in occupational and environmental health. Elsevier, New York

    Google Scholar 

  33. Qindeel M, Ahmed N, Sabir F, Khan S, Ur-Rehman A (2019) Drug Dev Ind Pharm 4:629–641

    Google Scholar 

  34. Moya ML, Lopez-López M, Lebron JA, Ostos FJ, Perez D, Camacho V, Beck I, Merino-Bohorquez V, Camean M, Madinabeitia N (2019) Pharmaceutics 2:69

    Google Scholar 

  35. Begas E, Papandreou C, Tsakalof A, Daliani D, Papatsibas G, Asprodini E (2014) J Chromatogr Sci 7:590–595

    Google Scholar 

  36. Zhao J, Zhang X, Sun X, Zhao M, Yu C, Lee RJ, Sun F, Zhou Y, Li Y, Teng L (2018) Eur J Pharm Biopharm 12:39–47

    Google Scholar 

  37. Guney A, Gardiner C, McCormack A, Malda J, Grijpma D (2018) Bioengineering 4:99

    Google Scholar 

  38. Danafar H (2017) Jundishapur J Nat Pharm Prod 12:1

    Google Scholar 

  39. Piao L, Dai Z, Deng M, Chen X, Jing X (2003) Polymer 7:2025–2031

    Google Scholar 

  40. Hwang MJ, Suh JM, Bae YH, Kim SW, Jeong B (2005) Biomacromol 2:885–890

    Google Scholar 

  41. Alami-Milani M, Zakeri-Milani P, Valizadeh H, Salehi R, Jelvehgari M (2018) IJBMS 2:153

    Google Scholar 

  42. Brandt JV, Piazza RD, dos Santos CC, Vega-Chacon J, Amantea BE, Pinto GC, Magnani M, Piva HL, Tedesco AC, Primo FL (2019) Colloids Surf B 6:228–234

    Google Scholar 

  43. Dong P, Wang X, Gu Y, Wang Y, Wang Y, Gong C, Luo F, Guo G, Zhao X, Wei Y (2010) Colloids Surf A 1–3:128–134

    Google Scholar 

  44. Manjili HK, Malvandi H, Mousavi MS, Attari E, Danafar H (2018) Artif Cells Nanomed Biotechnol 5:926–936

    Google Scholar 

Download references

Acknowledgements

The financial support to accomplish this research by Higher Education Commission of Pakistan is gratefully acknowledged. Maimoona Qindeel was supported by Indigenous Scholarship granted by Higher Education Commission of Pakistan. The authors also acknowledge Mr. Mulazim Hussain Asim for his help regarding chemicals. Department of Microbiology and Department of Chemistry, Quaid-i-Azam University is gratefully acknowledged for support in analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim.ur.Rehman.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qindeel, M., Ahmed, N., Shah, K.U. et al. New, Environment Friendly Approach for Synthesis of Amphiphilic PCL–PEG–PCL Triblock Copolymer: An Efficient Carrier for Fabrication of Nanomicelles. J Polym Environ 28, 1237–1251 (2020). https://doi.org/10.1007/s10924-020-01683-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01683-1

Keywords

Navigation