Skip to main content
Log in

High Removal Capacity of Arsenic from Drinking Water Using Modified Magnetic Polyurethane Foam Nanocomposites

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, a novel polyurethane foam (PU) nanocomposite adsorbent based on silane-modified magnetic iron-oxide nanoparticles (Fe3O4@APTES) is synthesized via a low cost and simple in situ polymerization method for the removal of arsenic ions from aqueous solutions. The chemical structure and surface morphology of the prepared nanoparticles and adsorbent were characterized using Fourier transform infrared spectroscopy, attenuated total reflection, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Inductively coupled plasma mass spectrometry was used to measure the arsenic concentration of the treated solutions. Sorption isotherms models were applied to determine the adsorption mechanism and modeling parameters. The removal capacity of the modified PU foam was at its highest during a contact time of four hours which resulted in a removal capacity of 95%. Kinetic studies were conducted to determine the adsorption capacity and the uptake rate of arsenic. A Pseudo-order model was found to be the best fit model for adsorption. The prepared adsorbent can be separated from the solution by using an external magnet field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kumar M, Puri A (2012) Indian J Occup Environ Med 16:40–44

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhou S, Wang D, Sun H, Chen J, Wu S, Na P (2014) Water Air Soil Pollut 225:1945

    Article  CAS  Google Scholar 

  3. Lièvremont D, Bertin PN, Lett MC (2009) Biochimie 91:1229–1237

    Article  CAS  PubMed  Google Scholar 

  4. Malwal D, Gopinath P (2017) Colloid Interface Sci Commun 19:14–19

    Article  CAS  Google Scholar 

  5. Zhu J, Wei S, Chen M, Gu H, Rapole SB, Pallavkar S, Ho TC, Hopper J, Guo Z (2013) Adv Powder Technol 24:459–467

    Article  CAS  Google Scholar 

  6. Venkateswarlu S, Kumar BN, Prathima B, SubbaRao Y, Jyothi NVV (2014) Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.09.006

    Article  Google Scholar 

  7. Wang J, Xu W, Chen L, Huang X, Liu J (2014) Chem Eng J 251:25–34

    Article  CAS  Google Scholar 

  8. Musico YLF, Santos CM, Dalida MLP, Rodrigues DF (2013) J Mater Chem A 1:3789–3796

    Article  CAS  Google Scholar 

  9. Yu X, Tong S, Ge M, Zuo J, Cao C, Song W (2013) J Mater Chem A 1:959–965

    Article  CAS  Google Scholar 

  10. Sharma M, Kalita P, Garg A, Senapati K (2018) Ecol Environ Sci 8(3):207–210

    Google Scholar 

  11. Cao C, Xiao L, Chen C, Shi X, Cao Q, Gao L (2014) Powder Technol 260:90–97

    Article  CAS  Google Scholar 

  12. Hussein FB, Abu-Zahra NH (2016) Water Sci Technol 17:889–896

    Google Scholar 

  13. Hussein FB, Abu-Zahra NH (2016) J Water Process Eng 13:1–5

    Article  Google Scholar 

  14. Hussein FB, Abu-Zahra NHJ (2017) JMMCE 5:298–310

    Article  CAS  Google Scholar 

  15. Moghaddam ST, Naimi-Jamal MR (2018) J Thermoplast Compos Mater. https://doi.org/10.1177/0892705718798008

    Article  Google Scholar 

  16. Abu-Zahra N, Gunashekar S (2014) J Res Updates Polym Sci 3:16–25

    Article  CAS  Google Scholar 

  17. Gunashekar S, Abu-Zahra N (2016) J Porous Mater 23:801–810

    Article  CAS  Google Scholar 

  18. Gunashekar S, Abu-Zahra N (2014) Int J Polym Sci 2014:7

    Article  CAS  Google Scholar 

  19. Pandey N, Shukla SK, Singh NB (2017) Nanocomposites 3:47–66

    Article  CAS  Google Scholar 

  20. Zhu J, Wei S, Lee IY, Park S, Willis J, Haldolaarachchige N, Young DP, Luoe Z, Guo Z (2012) RSC adv 2:1136–1143

    Article  CAS  Google Scholar 

  21. Yang K, Peng H, Wen Y, Li N (2010) Appl Surf Sci 256:3093–3097

    Article  CAS  Google Scholar 

  22. Moghaddam ST, Naimi-Jamal MR (2017) 21st International Electronic Conference on Synthetic Organic Chemistry Sciforum

  23. Zhou L, Li G, An T, Li Y (2010) Res Chem Intermed 36:277–288

    Article  CAS  Google Scholar 

  24. Ramesh A, Hasegawa H, Maki T, Ueda K (2007) Sep Purif Technol 56:90–100

    Article  CAS  Google Scholar 

  25. Gong J, Liu T, Wang X, Hu X, Zhang L (2011) Environ Sci Technol 45:6181–6187

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. Steven Hardcastle at UWM’s Advanced Analysis Facility and Dr. Ana Benko at UWM’s Shimadzu Lab Facility for their support and insights during the characterization and performance analysis of the foam samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidal Abu-Zahra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamaddoni Moghaddam, S., Naimi-Jamal, M.R., Rohlwing, A. et al. High Removal Capacity of Arsenic from Drinking Water Using Modified Magnetic Polyurethane Foam Nanocomposites. J Polym Environ 27, 1497–1504 (2019). https://doi.org/10.1007/s10924-019-01446-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01446-7

Keywords

Navigation