Skip to main content
Log in

Physico-chemical Characterization of Poly(3-Hydroxybutyrate) Produced by Halomonas salina, Isolated from a Hypersaline Microbial Mat

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, the characterization of poly(3-hydroxybutyrate) PHB produced by Halomonas salina isolated from a hypersaline microbial mat from Guerrero Negro, Baja California Sur, Mexico, is reported. The bacterial strain was able to produce isotactic PHB biopolymer with glucose (1%) as a single carbon source. The chemical structure of the polymer obtained was confirmed by Fourier-transform infrared (FTIR) and Nuclear magnetic resonance (NMR) spectroscopy. The polymer was thermally stable up to 225 °C and Differential scanning calorimetry (DSC) analysis showed a melting temperature (Tm) of 173.6 °C. The obtained polymer presented a lower degree of crystallinity (39.3%) in comparison with PHB produced by other bacteria and polyhydroxyalkanoate co-polymers. Thus, the PHB biopolymer obtained in this study, could be recognized as more suitable for practical use, contributing to the repertoire of available bioplastics for further potential biotechnological applications, in which elastic polymers are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lathwal P, Nehra K, Singh M, Rana JS (2018) Characterization of novel and efficient poly-3-hydroxybutyrate (PHB) producing bacteria isolated from rhizospheric soils. J Polym Environ 26:3437–3450. https://doi.org/10.1007/s10924-018-1224-5

    Article  CAS  Google Scholar 

  2. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Obruca S, Sedlacek P, Koller M et al (2018) Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol Adv 36:856–870. https://doi.org/10.1016/j.biotechadv.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  4. Waltermannn M, Steinbuchel A (2005) Neutral iipid bodies in prokaryotes: Recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619. https://doi.org/10.1128/JB.187.11.3607

    Article  Google Scholar 

  5. López-Cortés A, Lanz-Landázuri A, García-Maldonado JQ (2008) Screening and isolation of PHB-producing bacteria in a polluted marine microbial mat. Microb Ecol 56:112–120. https://doi.org/10.1007/s00248-007-9329-8

    Article  CAS  PubMed  Google Scholar 

  6. Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696. https://doi.org/10.1007/s00253-009-2397-6

    Article  CAS  PubMed  Google Scholar 

  7. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen G-Q (2010) Plastics completely synthesized by bacteria: Polyhydroxyalkanoates. Springer, Berlin, pp 17–37

    Book  Google Scholar 

  9. Lee SY (2000) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Article  Google Scholar 

  10. Cai L, Mei-Qing Y, Liu F et al (2009) Enhanced production of medium-chain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putida KT2442. Bioresour Technol 100:2265–2270. https://doi.org/10.1016/J.BIORTECH.2008.11.020

    Article  CAS  PubMed  Google Scholar 

  11. Castilho LR, Mitchell DA, Freire DMG (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour Technol 100:5996–6009. https://doi.org/10.1016/J.BIORTECH.2009.03.088

    Article  CAS  PubMed  Google Scholar 

  12. Chaudhry WN, Jamil N, Ali I et al (2011) Screening for polyhydroxyalkanoate (PHA)-producing bacterial strains and comparison of PHA production from various inexpensive carbon sources. Ann Microbiol 61:623–629. https://doi.org/10.1007/s13213-010-0181-6

    Article  CAS  Google Scholar 

  13. Choi J, Lee SY (1997) Process analysis and economic evaluation for Poly(3-hydroxybutyrate) production by fermentation. Bioprocess Eng 17:335. https://doi.org/10.1007/s004490050394

    Article  CAS  Google Scholar 

  14. Koller M, Gasser I, Schmid F, Berg G (2011) Linking ecology with economy: Insights into polyhydroxyalkanoate-producing microorganisms. Eng Life Sci 11:222–237. https://doi.org/10.1002/elsc.201000190

    Article  CAS  Google Scholar 

  15. Ley RE, Harris JK, Wilcox J et al (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695. https://doi.org/10.1128/AEM.72.5.3685-3695.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. García-Maldonado JQ, Escobar-Zepeda A, Raggi L et al (2018) Bacterial and archaeal profiling of hypersaline microbial mats and endoevaporites, under natural conditions and methanogenic microcosm experiments. Extremophiles 22:903–916. https://doi.org/10.1007/s00792-018-1047-2

    Article  CAS  PubMed  Google Scholar 

  17. Villanueva L, Del Campo J, Guerrero R (2010) Diversity and physiology of polyhydroxyalkanoate producing and degrading strains in microbial mats. FEMS Microbiol Ecol 74:42–54. https://doi.org/10.1111/j.1574-6941.2010.00928.x

    Article  CAS  PubMed  Google Scholar 

  18. Martínez-Gutiérrez CA, Latisnere-Barragán H, García-Maldonado JQ, López-Cortés A (2018) Screening of polyhydroxyalkanoate producing bacteria and PhaC-encoding genes in two hypersaline microbial mats from Guerrero Negro, Baja California Sur. Mexico PeerJ 6:e4780. https://doi.org/10.7717/peerj.4780

    Article  CAS  PubMed  Google Scholar 

  19. Cervantes-Uc JM, Catzin J, Vargas I et al (2014) Biosynthesis and characterization of polyhydroxyalkanoates produced by an extreme halophilic bacterium, Halomonas nitroreducens, isolated from hypersaline ponds. J Appl Microbiol 117:1056–1065. https://doi.org/10.1111/jam.12605

    Article  CAS  PubMed  Google Scholar 

  20. Rathi D-N, Amir HG, Abed RMM et al (2013) Polyhydroxyalkanoate biosynthesis and simplified polymer recovery by a novel moderately halophilic bacterium isolated from hypersaline microbial mats. J Appl Microbiol 114:384–395. https://doi.org/10.1111/jam.12083

    Article  CAS  PubMed  Google Scholar 

  21. Kucera D, Pernicová I, Kovalcik A et al (2018) Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresour Technol 256:552–556. https://doi.org/10.1016/j.biortech.2018.02.062

    Article  CAS  PubMed  Google Scholar 

  22. Koller M (2015) Recycling of waste streams of the biotechnological poly(hydroxyalkanoate) production by Haloferax mediterranei on whey. Int J Polym Sci 2015:. https://doi.org/10.1155/2015/370164

  23. Yin J, Chen JC, Wu Q, Chen GQ (2015) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33:1433–1442. https://doi.org/10.1016/j.biotechadv.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  24. Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24–27

    Article  CAS  Google Scholar 

  25. Law JH, Slepecky RA (1961) Assay of poly-beta-hydroxybutyric acid. J Bacteriol 82:33–36

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rohini D, Phadnis S, Rawal SK (2006) Synthesis and characterization of poly-β-hydroxybutyrate from Bacillus thuringiensis R1. Indian J Biotechnol 5:276–283

    CAS  Google Scholar 

  27. Mohandas SP, Balan L, Lekshmi N et al (2017) Production and characterization of polyhydroxybutyrate from Vibrio harveyi MCCB 284 utilizing glycerol as carbon source. J Appl Microbiol 122:698–707. https://doi.org/10.1111/jam.13359

    Article  CAS  PubMed  Google Scholar 

  28. Porter M, Yu J (2011) Monitoring the in situ crystallization of native biopolyester granules in Ralstonia eutropha via infrared spectroscopy. J Microbiol Methods 87:49–55. https://doi.org/10.1016/J.MIMET.2011.07.009

    Article  CAS  PubMed  Google Scholar 

  29. Jan S, Roblot C, Courtois J et al (1996) 1H NMR spectroscopic determination of poly 3-hydroxybutyrate extracted from microbial biomass. Enzyme Microb Technol 18:195–201. https://doi.org/10.1016/0141-0229(95)00096-8

    Article  CAS  Google Scholar 

  30. James BW, Mauchline WS, Dennis PJ et al (1999) Poly-3-hydroxybutyrate in Legionella pneumophila, an energy source for survival in low-nutrient environments. Appl Environ Microbiol 65:822–827

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rozsa C, Gonzalez M, Galego N et al (1996) Biosynthesis and characterization of poly(β-hydroxybutyrate) produced by Bacillus Circulans. Polym Bull 37:429–435. https://doi.org/10.1007/BF00556801

    Article  CAS  Google Scholar 

  32. Li S-D, He J-D, Yu PH, Cheung MK (2003) Thermal degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as studied by TG, TG-FTIR, and Py-GC/MS. J Appl Polym Sci 89:1530–1536. https://doi.org/10.1002/app.12249

    Article  CAS  Google Scholar 

  33. Kong Y, Hay JN (2002) The measurement of the crystallinity of polymers by DSC. Polymer 43:3873–3878. https://doi.org/10.1016/S0032-3861(02)00235-5

    Article  CAS  Google Scholar 

  34. Kulkarni SO, Kanekar PP, Jog JP et al (2015) Production of copolymer, poly (hydroxybutyrate-co-hydroxyvalerate) by Halomonas campisalis MCM B-1027 using agro-wastes. Int J Biol Macromol 72:784–789. https://doi.org/10.1016/J.IJBIOMAC.2014.09.028

    Article  CAS  PubMed  Google Scholar 

  35. Xu S, Luo R, Wu L et al (2006) Blending and characterizations of microbial poly(3-hydroxybutyrate) with dendrimers. J Appl Polym Sci 102:3782–3790. https://doi.org/10.1002/app.24742

    Article  CAS  Google Scholar 

  36. Manna A, Pal S, Paul AK (2000) Synthesis and accumulation of poly(3-hydroxybutyric acid) by Rhizobium sp. Acta Biol Hungarica 51:73–82

    CAS  Google Scholar 

  37. Dias JML, Lemos PC, Serafim LS et al (2006) Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: From the substrate to the final product. Macromol Biosci 6:885–906. https://doi.org/10.1002/mabi.200600112

    Article  CAS  PubMed  Google Scholar 

  38. Horng Y-T, Chien C-C, Wei Y-H et al (2011) Functional cis-expression of phaCAB genes for poly(3-hydroxybutyrate) production by Escherichia coli. Lett Appl Microbiol 52:475–483. https://doi.org/10.1111/j.1472-765X.2011.03029.x

    Article  CAS  PubMed  Google Scholar 

  39. Bengtsson S, Pisco AR, Johansson P et al (2010) Molecular weight and thermal properties of polyhydroxyalkanoates produced from fermented sugar molasses by open mixed cultures. J Biotechnol 147:172–179. https://doi.org/10.1016/j.jbiotec.2010.03.022

    Article  CAS  PubMed  Google Scholar 

  40. Hermann-Krauss C, Koller M, Muhr A et al (2013) Archaeal production of polyhydroxyalkanoate (PHA) Co- and terpolyesters from biodiesel industry-derived by-products. Archaea. https://doi.org/10.1155/2013/129268

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank to LANNBIO CINVESTAV-Merida (projects FOMIX-Yucatan 2008-108160, CONACYT LAB-2009-01 No. 123913 and CB20121 178947) for the TGA, XRD, NMR and SEM-EDX measurements. The authors acknowledge the Cátedras CONACYT projects 3139 and 1568. We highly appreciate the technical support of Hever Latisnere-Barragán in the laboratory (CIBNOR) and Dr Wilberth Herrera Kao for assistance with GPC measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Ortencia González-Díaz or José Q. García-Maldonado.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Núñez, E., Martínez-Gutiérrez, C.A., López-Cortés, A. et al. Physico-chemical Characterization of Poly(3-Hydroxybutyrate) Produced by Halomonas salina, Isolated from a Hypersaline Microbial Mat. J Polym Environ 27, 1105–1111 (2019). https://doi.org/10.1007/s10924-019-01417-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01417-y

Keywords

Navigation