Skip to main content
Log in

In Situ Thermodielectric Analysis of the Gelatinization Mechanism of Raw Maize Starch: An Experimental and Theoretical Approach

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Raw maize starch, initially stored at ambient temperature and relative humidity, was examined by means of Broadband Dielectric Spectroscopy in the temperature range from 30 to 130 °C and in the frequency range from 0.1 Hz to 1 MHz. The α-relaxation processes of amylose and amylopectin were, for the first time, separately recorded and analyzed by employing the electric modulus formalism, while the gelatinization mechanism is discussed and modeled. Molecular dynamics analysis, conducted via the Vogel–Fulcher–Tammann equation, and the Debye and Cole–Cole dielectric function models were employed to further understand the gelatinization process and the dielectric behavior of amylose and amylopectin respectively. In addition, the transformation of V-amylose to free amylose was also observed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dong Y, Matson JB, Edgar KJ (2017) Olefin cross-metathesis in polymer and polysaccharide chemistry: a review. Biomacromol 18:1661–1676. https://doi.org/10.1021/acs.biomac.7b00364

    Article  CAS  Google Scholar 

  2. Ruellan A, Guinault A, Sollogoub C et al (2015) Industrial vegetable oil by-products increase the ductility of polylactide. Express Polym Lett 9:1087–1103. https://doi.org/10.3144/expresspolymlett.2015.98

    Article  CAS  Google Scholar 

  3. Zhang Y, Rempel C, Liu Q (2014) Thermoplastic starch processing and characteristics: a review. Crit Rev Food Sci Nutr 54:1353–1370. https://doi.org/10.1080/10408398.2011.636156

    Article  CAS  PubMed  Google Scholar 

  4. Chung YL, Ansari S, Estevez L et al (2010) Preparation and properties of biodegradable starch-clay nanocomposites. Carbohydr Polym 79:391–396. https://doi.org/10.1016/j.carbpol.2009.08.021

    Article  CAS  Google Scholar 

  5. Tavares LB, Boas CV, Schleder GR et al (2016) Bio-based polyurethane prepared from Kraft lignin and modified castor oil. Express Polym Lett 10:927–940. https://doi.org/10.3144/expresspolymlett.2016.86

    Article  CAS  Google Scholar 

  6. Jane J, Chen YY, Lee LF et al (1999) Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem 76:629–637. https://doi.org/10.1094/CCHEM.1999.76.5.629

    Article  CAS  Google Scholar 

  7. Nafchi AM, Moradpour M, Saeidi M, Alias AK (2013) Thermoplastic starches: properties, challenges, and prospects. Starch/Staerke 65:61–72. https://doi.org/10.1002/star.201200201

    Article  CAS  Google Scholar 

  8. Tábi T, Kovács JG (2007) Examination of injection moulded thermoplastic maize starch. Express Polym Lett 1:804–809. https://doi.org/10.3144/expresspolymlett.2007.111

    Article  CAS  Google Scholar 

  9. Zaikov GE (2005) Chemistry of polysaccharides. Nova Science Publishers, New York

    Google Scholar 

  10. Belitz HD, Grosch W, Schieberle P et al (2009) Food chemistry. Springer, Berlin

    Google Scholar 

  11. Obiro WC, Sinha Ray S, Emmambux MN (2012) V-amylose structural characteristics, methods of preparation, significance, and potential applications. Food Rev Int 28:412–438. https://doi.org/10.1080/87559129.2012.660718

    Article  CAS  Google Scholar 

  12. Xie F, Pollet E, Halley PJ, Avérous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38:1590–1628. https://doi.org/10.1016/j.progpolymsci.2013.05.002

    Article  CAS  Google Scholar 

  13. Karger-Kocsis J, Kmetty Á, Lendvai L et al (2015) Water-assisted production of thermoplastic nanocomposites: a review. Materials (Basel) 8:72–95. https://doi.org/10.3390/ma8010072

    Article  CAS  Google Scholar 

  14. Hongsprabhas P, Israkarn K (2008) New insights on the characteristics of starch network. Food Res Int 41:998–1006. https://doi.org/10.1016/j.foodres.2008.08.008

    Article  CAS  Google Scholar 

  15. Tester RF, Morrison WR (1990) Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem 67:551–557

    CAS  Google Scholar 

  16. Drakopoulos SX, Karger-Kocsis J, Kmetty Á et al (2017) Thermoplastic starch modified with microfibrillated cellulose and natural rubber latex: a broadband dielectric spectroscopy study. Carbohydr Polym 157:. https://doi.org/10.1016/j.carbpol.2016.10.036

  17. Lendvai L, Karger-Kocsis J, Kmetty A, Drakopoulos SX (2016) Production and characterization of microfibrillated cellulose-reinforced thermoplastic starch composites. J Appl Polym Sci. https://doi.org/10.1002/app.42397

    Article  Google Scholar 

  18. Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956. https://doi.org/10.1016/j.eurpolymj.2012.10.016

    Article  CAS  Google Scholar 

  19. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40, 3941–3994.

    Article  CAS  Google Scholar 

  20. Angellier H, Molina-Boisseau S, Dole P, Dufresne A (2006) Thermoplastic starch-Waxy maize starch nanocrystals nanocomposites. Biomacromol 7:531–539. https://doi.org/10.1021/bm050797s

    Article  CAS  Google Scholar 

  21. Wu D, Samanta A, Srivastava RK, Hakkarainen M (2017) Starch-derived nanographene oxide paves the way for electrospinnable and bioactive starch scaffolds for bone tissue engineering. Biomacromol 18:1582–1591. https://doi.org/10.1021/acs.biomac.7b00195

    Article  CAS  Google Scholar 

  22. Radhakrishnan J, Subramanian A, Krishnan UM, Sethuraman S (2017) Injectable and 3D bioprinted polysaccharide hydrogels: from cartilage to osteochondral tissue engineering. Biomacromol 18:1–26. https://doi.org/10.1021/acs.biomac.6b01619

    Article  CAS  Google Scholar 

  23. Mele E (2016) Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings. J Mater Chem B 4:4801–4812. https://doi.org/10.1039/C6TB00804F

    Article  CAS  Google Scholar 

  24. Kanapitsas A, Tsonos C, Psarras GC, Kripotou S (2016) Barium ferrite/epoxy resin nanocomposite system: fabrication, dielectric, magnetic and hydration studies. Express Polym Lett 10:227–236. https://doi.org/10.3144/expresspolymlett.2016.21

    Article  CAS  Google Scholar 

  25. Tsonos C, Pandis C, Soin N et al (2015) Multifunctional nanocomposites of poly(vinylidene fluoride) reinforced by carbon nanotubes and magnetite nanoparticles. Express Polym Lett 9:1104–1118. https://doi.org/10.3144/expresspolymlett.2015.99

    Article  CAS  Google Scholar 

  26. Tsangaris GM, Psarras GC, Kouloumbi N (1998) Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci 33:2027–2037. https://doi.org/10.1023/A:1004398514901

    Article  CAS  Google Scholar 

  27. Tsangaris GM, Psarras GC (1999) Dielectric response of a polymeric three-component composite. J Mater Sci 34:2151–2157. https://doi.org/10.1023/A:1004528330217

    Article  CAS  Google Scholar 

  28. Psarras GC, Sofos GA, Vradis A et al (2014) HNBR and its MWCNT reinforced nanocomposites: crystalline morphology and electrical response. Eur Polym J 54:190–199. https://doi.org/10.1016/j.eurpolymj.2014.03.002

    Article  CAS  Google Scholar 

  29. Psarras GC, Siengchin S, Karahaliou PK et al (2011) Dielectric relaxation phenomena and dynamics in polyoxymethylene/polyurethane/alumina hybrid nanocomposites. Polym Int 60:1715–1721. https://doi.org/10.1002/pi.3136

    Article  CAS  Google Scholar 

  30. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, Berlin

    Book  Google Scholar 

  31. Vryonis O, Anastassopoulos DL, Vradis AA, Psarras GC (2016) Dielectric response and molecular dynamics in epoxy-BaSrTiO3 nanocomposites: effect of nanofiller loading. Polymer 95:82–90. https://doi.org/10.1016/j.polymer.2016.04.050

    Article  CAS  Google Scholar 

  32. Kalmykov YP, Coffey WT, Crothers DSF, Titov SV (2004) Microscopic models for dielectric relaxation in disordered systems. Phys Rev E 70:11. https://doi.org/10.1103/PhysRevE.70.041103

    Article  CAS  Google Scholar 

  33. Psarras GC (2010) Conductivity and dielectric characterization of polymer nanocomposites. In: Tjong SC, Mai Y-W (eds) Physical properties and applications of polymer nanocomposites, 1st edn. Elsevier, Amsterdam, pp 31–69

    Google Scholar 

  34. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–351. https://doi.org/10.1063/1.1750906

    Article  CAS  Google Scholar 

  35. Davidson DW, Cole RH (1950) Dielectric relaxation in glycerine. J Chem Phys 18:1417–1417. https://doi.org/10.1063/1.1747496

    Article  CAS  Google Scholar 

  36. Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8:161–210. https://doi.org/10.1016/0032-3861(67)90021-3

    Article  CAS  Google Scholar 

  37. Miller LA, Gordon J, Davis EA (1991) Dielectric and thermal transition properties of chemically modified starches during heating. Cereal Chem 68:441–448

    CAS  Google Scholar 

  38. Venkatesh MS, Raghavan GSV (2004) An overview of microwave processing and dielectric properties of agri-food materials. Biosyst Eng 88:1–18. https://doi.org/10.1016/j.biosystemseng.2004.01.007

    Article  Google Scholar 

  39. Einfeldt J, Meißner D, Kwasniewski A, Einfeldt L (2001) Dielectric spectroscopic analysis of wet and well dried starches in comparison with other polysaccharides. Polymer 42:7049–7062. https://doi.org/10.1016/S0032-3861(01)00152-5

    Article  CAS  Google Scholar 

  40. Majumder TP, Meißner D, Schick C (2004) Dielectric processes of wet and well-dried wheat starch. Carbohydr Polym 56:361–366. https://doi.org/10.1016/j.carbpol.2004.03.005

    Article  CAS  Google Scholar 

  41. Majumder TP, Meißner D, Schick C, Roy SK (2006) Phase transition phenomena and the corresponding relaxation process of wheat starch-water polymer matrix studied by dielectric spectroscopic method. Carbohydr Polym 65:129–133. https://doi.org/10.1016/j.carbpol.2005.12.034

    Article  CAS  Google Scholar 

  42. Kalini A, Gatos KG, Karahaliou PK, Georga SN, Krontiras CA, Psarras GC (2010) Probing the dielectric response of polyurethane/alumina nanocomposites. J Polym Sci Part B: Polym Phys 48:2346–2354. https://doi.org/10.1002/polb.22120

    Article  CAS  Google Scholar 

  43. Myllärinen P (2002) The crystallinity of amylose and amylopectin films. Carbohydr Polym 48:41–48. https://doi.org/10.1016/S0144-8617(01)00208-9

    Article  Google Scholar 

  44. Raphaelides S, Karkalas J (1988) Thermal dissociation of amylose-fatty acid complexes. Carbohydr Res 172:65–82

    Article  CAS  Google Scholar 

  45. Maistros GM, Bucknall CB, Bedford C, Oal MK (1994) Resin blends during curing. Polym Eng Sci 34:1517–1528

    Article  CAS  Google Scholar 

Download references

Funding

The work reported here was supported by the Hungarian Scientific Research Fund (OTKA) through the project K 109409.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Psarras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drakopoulos, S.X., Karger-Kocsis, J. & Psarras, G.C. In Situ Thermodielectric Analysis of the Gelatinization Mechanism of Raw Maize Starch: An Experimental and Theoretical Approach. J Polym Environ 27, 333–342 (2019). https://doi.org/10.1007/s10924-018-1348-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1348-7

Keywords

Navigation