Skip to main content

Advertisement

Log in

Biocomposite Fiber-Matrix Treatments that Enhance In-Service Performance Can Also Accelerate End-of-Life Fragmentation and Anaerobic Biodegradation to Methane

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biodegradable resins can enhance the environmental sustainability of wood-plastic composites (WPCs) by enabling methane (CH\(_4\)) recovery via anaerobic digestion (AD). An under appreciated step in biocomposite AD is the role of cracking and fragmentation due to moisture uptake by the wood fiber (WF) fraction. Here, we use batch microcosms to simulate AD at end-of-life and to assess the effects of fiber-matrix treatments used to retard in-service moisture uptake. The composites evaluated were injection molded poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with WF (0, 20%) using two fiber-matrix compatibilization treatments: (1) hydrophobic silane treatment of the wood fiber and (2) grafting of hydrophilic maleic anhydride groups to the PHBV matrix. Both treatments accelerated rates of mass loss and CH\(_4\) production by a factor of 1.2–2.3 compared to neat PHBV. The fragmentation rate, as measured by mass loss, increased significantly for treated samples compared to untreated samples. A ranking of test samples from lowest to highest rates of mass loss gave the following sequence: neat PHBV \(\approx\) maleated PHBV < PHBV plus untreated WF < maleated PHBV plus untreated WF < PHBV plus silane-treated WF. Compared to the untreated samples, maleic anhydride treatment increased the mass loss rate by 30%, and silane treatment increased the mass loss rate by 92%. Onset of cracking in silane-treated composites was observed at 2 weeks (using X-ray micro-computed tomography). At the same time, solid mass loss and CH\(_4\) production peaked, implicating cracking and physical disintegration as the rate-limiting step for accelerated anaerobic degradation. When modified to account for bioplastic matrix degradation, a previously derived moisture-induced damage model could predict the onset of composite fragmentation at end-of-life. These results are significant for design of bio-WPCs and demonstrate that treatments designed to improve in-service performance can also improve end-of-life options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Flores-Hernández M, Reyes González I, Lomelí-Ramírez M, Fuentes-Talavera F, Silva-Guzmán J, Cerpa-Gallegos M, García-Enríquez S (2014) J Compos Mater 48:209

    Article  Google Scholar 

  2. F. Associates (1998) Characterization of building-related construction and demolition Debris in the United States, Tech Rep EPA530-R-98-010, U.S. Environmental Protection Agency

  3. AIA Sustainability Discussion Group (2008) Construction waste management strategies. Tech Rep BP 10.05.36, American Institute of Architects

  4. Office of Resource Conservation and Recovery (5306P) (2015) Adv Sustain Mater Manag Facts and Figures Report, Tech Rep EPA530-R-15-002, U.S. Environmental Protection Agency

  5. Miller SA, Srubar WV III, Billington SL, Lepech MD (2015) Resour Conserv Recycl 99:72

    Article  Google Scholar 

  6. Netravali AN, Chabba S (2003) Mater Today 6:22

    Article  Google Scholar 

  7. Rostkowski KH, Criddle CS, Lepech MD (2012) Environ Sci Technol 46:9822

    CAS  Google Scholar 

  8. Avella M, Rota G, Martuscelli E, Raimo M, Sadocco P, Elegir G, Riva R (2000) J Mater Sci 35:829

    Article  CAS  Google Scholar 

  9. Teramoto N, Urata K, Ozawa K, Shibata M (2004) Polym Degrad Stab 86:401

    Article  CAS  Google Scholar 

  10. Felton CC, De Groot C (1996) Rodney. For Prod J 46:37

    CAS  Google Scholar 

  11. Bismarck A, Mohanty AK, Aranberri-Askargorta I, Czapla S, Misra M, Hinrichsen G, Springer J (2001) Green Chem 3:100

    Article  CAS  Google Scholar 

  12. Srubar W, Billington S (2013) Compos Part A 50:81

    Article  CAS  Google Scholar 

  13. Srubar WV III, Miller SA, Lepech MD, Billington SL (2014) Constr Build Mater 71:589

    Article  Google Scholar 

  14. Srubar WV III, Pilla S, Wright ZC, Ryan CA, Greene JP, Frank CW, Billington SL (2012) Compos Sci Technol 72:708

    Article  CAS  Google Scholar 

  15. Srubar WV, Frank CW, Billington SL (2012) Polymer 53:2152

    Article  CAS  Google Scholar 

  16. Molitoris HP, Moss ST, De Koning G, Jendrossek D (1996) Appl Microbiol Biotechnol 46:570

    Article  CAS  Google Scholar 

  17. Kyrikou I, Briassoulis D (2007) J Polym Environ 15:125

    Article  CAS  Google Scholar 

  18. Imam S, Gordon S, Shogren R, Greene R (1995) J Environ Polym Degr 3:205

    Article  CAS  Google Scholar 

  19. Imam S, Chen L, Gordon S, Shogren R, Weisleder D, Greene R (1998) J Environ Polym Degr 6:91

    Article  CAS  Google Scholar 

  20. Imam S, Gordon S, Shogren R, Tosteson T, Govind N, Greene R (1999) Appl Environ Microbiol 65:431

    CAS  Google Scholar 

  21. Calderón K, González-Martínez A, Gómez-Silván C, Osorio F, Rodelas B, González-López J (2013) Int J Mol Sci 14:18572

    Article  Google Scholar 

  22. Zwietering M, Jongenburger I, Rombouts F, Van’t Riet K (1990) Appl Environ Microbiol 56:1875

    CAS  Google Scholar 

  23. López S, Prieto M, Dijkstra J, Dhanoa M, France J (2004) Int J Food Microbiol 96:289

    Article  Google Scholar 

  24. Ghatak MD, Mahanta P (2014) Carbon 63:35

    Google Scholar 

  25. Lay J-J, Li Y-Y, Noike T (1996) Doboku Gakkai Ronbunshu 1996:101

    Article  Google Scholar 

  26. Lay J-J, Li Y-Y, Noike T (1998) J Environ Eng 124:730

    Article  CAS  Google Scholar 

  27. Ryan CA, Billington SL, Criddle CS (2017) Bioresour Technol 227:205

    Article  CAS  Google Scholar 

  28. Gordon S, Imam S, Shogren R, Govind N, Greene R (2000) J Appl Polym Sci 76:1767

    Article  CAS  Google Scholar 

  29. Tong X, Smith LH, McCarty PL (1990) Biomass 21:239

    Article  CAS  Google Scholar 

  30. Barlaz M (2006) Waste Manag 26:321

    Article  CAS  Google Scholar 

  31. Budwill K, Fedorak PM, Page WJ (1992) Appl Environ Microbiol 58:1398

    CAS  Google Scholar 

  32. Reischwitz A, Stoppok E, Buchholz K (1998) Biodegradation 8:313

    Article  CAS  Google Scholar 

  33. Shin P, Kim M, Kim J (1997) J Polym Environ 5:33

    CAS  Google Scholar 

  34. Gutierrez-Wing MT, Stevens BE, Theegala CS, Negulescu II, Rusch KA (2010) J Environ Eng 136:709

    Article  CAS  Google Scholar 

  35. Nishida H, Tokiwa Y (1993) J Polym Environ 1:65

    Article  CAS  Google Scholar 

  36. Tokiwa Y, Calabia B (2007) J Polym Environ 15:259

    Article  CAS  Google Scholar 

  37. Ryan CA, Billington SL, Criddle CS (2017) Compos Part A 95:388

    Article  CAS  Google Scholar 

  38. Stark N (2001) J Thermoplast Compos Mater 14:421

    Article  CAS  Google Scholar 

  39. ASTM, D5526-94 (2002) Standard test method for determining anaerobic biodegradation of plastic materials under accelerated landfill conditions. ASTM International, West Conshohocken

    Google Scholar 

  40. Katdare A, Chaubal M (2006) Excipient development for pharmaceutical, biotechnology, and drug delivery systems. CRC Press, Boca raton

    Book  Google Scholar 

  41. Wright ZC (2013) Poly(hydroxybutyrate-co-valerate) biodegradable foams the effects of processing, nanoscale additives, and aging. Ph.D. thesis, Stanford University, Stanford

    Google Scholar 

  42. ASTM, D5210-92(2007): Standard test method for determining the anaerobic biodegradation of plastic materials in the presence of municipal sewage sludge, ASTM International (2007)

  43. Shelton DR, Tiedje JM (1984) Appl Environ Microbiol 47:850

    CAS  Google Scholar 

  44. Wu WM, Hickey RF, Zeikus JG (1991) Appl Environ Microbiol 57:3438

    CAS  Google Scholar 

  45. Kenealy W, Zeikus JG (1981) J Bacteriol 146:133

    CAS  Google Scholar 

  46. Association American Public Health (1998) American Water Works Association and Water Environment Federation. American Public Health Association, Standard Methods for the Examination of Water and Wastewater

  47. Gartiser S, Wallrabenstein M, Stiene G (1998) J Environ Polym Degr 6:159

    Article  CAS  Google Scholar 

  48. Morse MC (2010) Anaerobic biodegradation of biocomposites for the building industry. Ph.D. thesis, Stanford University, Stanford

  49. George J, Sreekala MS, Thomas S (2001) Polym Engi Sci 41:1471

    Article  CAS  Google Scholar 

  50. Anderson SP (2007) Wood fiber reinforced bacterial biocomposites: effects of interfacial modifiers and processing on mechanical and physical properties. Ph.D. thesis, Washington State University, Pullman

  51. Behrends A, Klingbeil B, Jendrossek D (1996) FEMS Microbiol Lett 143:191

    Article  CAS  Google Scholar 

  52. Calabia BP, Tokiwa Y (2006) Biotechnol Lett 28:383

    Article  CAS  Google Scholar 

  53. Gangoiti J, Santos M, Prieto MA, de la Mata I, Serra JL, Llama MJ (2012) Appl Environ Microbiol 78:7229

    Article  CAS  Google Scholar 

  54. Erickson HP (2009) Biol Proced Online 11:32

    Article  CAS  Google Scholar 

  55. Narihiro T, Sekiguchi Y (2007) Curr Opin Biotech 18:273

    Article  CAS  Google Scholar 

  56. Bergey DH, Whitman WB, Goodfellow M, Kämpfer P, Busse H-J (eds) (2012) Bergey’s manual of systematic bacteriology. Springer, New York

    Google Scholar 

  57. Morse MC, Liao Q, Criddle CS, Frank CW (2011) Polymer 52:547

    Article  CAS  Google Scholar 

  58. Joseph EG, Wilkes GL, Baird DG (1985) Polym Eng Sci 25:377

    Article  CAS  Google Scholar 

  59. Corrêa M, Rezende M, Rosa D, Agnelli J, Nascente P (2008) Polym Test 27:447

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank BioProcess Control, SeaHold LLC, and Team Biogas for their generous support and collaboration with the AMPTS unit. We also thank the City of San Jose and the employees of the San Jose Waste Water Treatment Plant for their assistance in obtaining inoculum for these experiments. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF) and Soft and Hybrid Materials Facility (SMF) at Stanford University. Micro-CT imaging and analysis were performed at the Stanford Small Animal Imaging Facility, and in particular we thank Dr. Timothy Doyle for his expertise in establishing scan conditions and analysis and Dr. Frezghi Habte for his assistance in data analysis. This work was funded by NSF CMMI [Grant 0900325], California EPA Department of Toxic Substances Control [Project Ref. No. 07T3451], CalRecycle [Contract No. DRRR10020], and individual graduate funding from the EPA Star Graduate Fellowship and the Stanford Civil Engineering Charles H. Leavell Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecily A. Ryan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryan, C.A., Billington, S.L. & Criddle, C.S. Biocomposite Fiber-Matrix Treatments that Enhance In-Service Performance Can Also Accelerate End-of-Life Fragmentation and Anaerobic Biodegradation to Methane. J Polym Environ 26, 1715–1726 (2018). https://doi.org/10.1007/s10924-017-1068-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1068-4

Keywords

Navigation