Skip to main content
Log in

Synthesis of a Useful and Economic Polymeric Material for Effective Removal of Bisphenol A

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A composite material containing polyacryl amide (PAA) and lignin (L) was developed and characterized for effective Bisphenol A (BPA) removal. Fundamentals of the proposed approach is based on adsorption of BPA molecules on PAA-L composite. Characterization of material was carried out by FTIR and PZC analysis. Adsorption of BPA ions from aqueous solution as a function of BPA concentration, pH, ionic strength, temperature, and reusability of adsorbent was investigated in detail. The adsorption data were analyzed by using the Langmuir, Freundlich and Dubinin–Radushkevich (DR) models. As a result of this analysis, r2 values were found as 0.991, 0.984, and 0.873, respectively. Maximum adsorption capacity obtained from Langmuir model was calculated as 55.358 mg g−1. Freundlich heterogeneity was found as 0.637 while EDR value obtained from DR model as 12.219. Experimental results showed that the adsorption of BPA is based on chemical binding, exothermic and spontaneous process. Reusability of PAA-L adsorbent was verified by recovery experiments for a lot of times and was not observed any change or deterioration on the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vandenberg LN, Hauser R, Marcus, Olea N, Welshons WV (2007) Reprod Toxicol 24:139

    Article  CAS  Google Scholar 

  2. Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR (1998) Chemosphere 36:2149

    Article  CAS  Google Scholar 

  3. Rykowska I, Wasiak W (2006) Acta Chromatogr 16:7

    CAS  Google Scholar 

  4. Rogers JA, Metz L, Yong VW (2013) Mol Immunol 53:421

    Article  CAS  Google Scholar 

  5. Geens T, Aerts D, Berthot C, Bourguignon JP, Goeyens L, Lecomte P, Maghuin-Rogister G, Pironnet AM, Pussemier L, Scippo ML, Van Loco J, Covaci A (2012) Food Chem Toxicol 50:3725

    Article  CAS  Google Scholar 

  6. Joseph L, Boateng LK, Flora JRV, Park YG, Son A, Badawy A, Yoon Y (2013) Sep Purif Technol 107:37

    Article  CAS  Google Scholar 

  7. Yang SF, Hai FI, Nghiem LD, Nguyen LN, Roddick F, Price WE (2013) Int Biodeterior Biodegrad 85:483

    Article  CAS  Google Scholar 

  8. Doong RA, Chang SM, Tsai CW (2013) Appl Catal B 129:48

    Article  CAS  Google Scholar 

  9. Zhou X, Wei J, Liu K, Liu N, Zhou B (2014) Langmuir 30:13861

    Article  CAS  Google Scholar 

  10. Tsai WT, Hsu HC, Su TY, Lin KY, Lin Cm (2006) J Colloid Interface Sci 299:513

    Article  CAS  Google Scholar 

  11. Xu J, Wang L, Zhu Y (2012) Langmuir 28:8418

    Article  CAS  Google Scholar 

  12. Umar M, Roddick F, Fan L, Aziz HA (2013) Chemosphere 90:2197

    Article  CAS  Google Scholar 

  13. Dong Y, Wu D, Chen X, Lin Y (2010) J Colloid Interface Sci 348:585

    Article  CAS  Google Scholar 

  14. Park Y, Sun Z, Ayoko GA, Frost RL (2014) Chemosphere 107:249

    Article  CAS  Google Scholar 

  15. Han W, Luo L, Zhang S (2012) Int J Environ Sci Tech 9:543

    Article  CAS  Google Scholar 

  16. Nakanishi A, Tamai M, Kawasaki N, Nakamura T, Tanada S (2002) J Colloid Interface Sci 252:393

    Article  CAS  Google Scholar 

  17. Xiao GQ, Fu LC, Li AM (2012) Chem Eng J 191:171

    Article  CAS  Google Scholar 

  18. Guo WL, Hu W, Pan JM, Zhou HC, Guan W, Wang X, Dai JD, Xu LC (2011) Chem Eng J 171:603

    Article  CAS  Google Scholar 

  19. Lapierre C (2010) Lignins and Lignans. CRC Press, Boca Raton

    Google Scholar 

  20. Şimşek S, Ulusoy U (2013) React Funct Polym 73:73

    Article  Google Scholar 

  21. Şimşek S, Baybaş D, Koçyiğit MC, Yıldırım H (2013) J Radioanal Nucl Chem 299:283

    Google Scholar 

  22. Pretsch E, Bühlmann P, Affolter C (2000) Structure Determination of Organic Compounds, 3rd edn. Springer, New York

    Book  Google Scholar 

  23. Zhao WF, Fang BH, Li N, Nie SQ, Wei Q, Zhao CS (2009) J Appl Polym Sci 113:916

    Article  CAS  Google Scholar 

  24. Chang CF, Chang CY, Chen KH, Tsai WT, Shie JL, Chen YH (2004) J Colloid Interface Sci 277:29

    Article  CAS  Google Scholar 

  25. Foo KY, Hameed BH (2010) Chem Eng J 156:2

    Article  CAS  Google Scholar 

  26. Hutson ND, Yang RT (1997) Adsorption 3:189

    Article  CAS  Google Scholar 

  27. Ho YS (2006) J Hazard Mater 136:681

    Article  CAS  Google Scholar 

  28. Wu FC, Tseng RL, Huang SC, Juang RS (2009) Chem Eng J 151:1

    Article  CAS  Google Scholar 

  29. Haerifar M, Azizian S (2013) J Phys Chem C 117:8310

    Article  CAS  Google Scholar 

  30. Ho YS (2004) Scientometrics 59:171

    Article  CAS  Google Scholar 

  31. Ulusoy HI, Simsek S (2013) J Hazard Mater 254–255:397

    Article  Google Scholar 

Download references

Acknowledgements

This study has been supported by Cumhuriyet University Scientific Research Projects Commission as the research project with the ECZ-017 code. The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil İbrahim Ulusoy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şimşek, S., Ulusoy, H.İ. Synthesis of a Useful and Economic Polymeric Material for Effective Removal of Bisphenol A. J Polym Environ 26, 1605–1612 (2018). https://doi.org/10.1007/s10924-017-1067-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1067-5

Keywords

Navigation