Skip to main content
Log in

Chemical Sensor Development and Antibacterial Activities Based on Polyaniline/Gemini Surfactants for Environmental Safety

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The polyaniline doped novel anionic gemini surfactant (PANI/GS) was chemically synthesized by a micellar polymerization process and then characterized in details by X-ray powder diffractometry, scanning electron microscopy, and FTIR spectroscopy. The results show the presence of polyaniline in the emeraldine base was formed by doping with gemini surfactant. The thermal properties of the composites were studied by carrying out thermal gravimetric analysis. The PANI/GS were found to be soluble in common organic solvents such as chloroform as well as DMSO. The antibacterial activity of the obtained PANI/GS was also evaluated against Gram positive bacteria Bacillus subtilis, Gram negative bacteria Escherichia coli and antibiotics (Amoxicillin) using the agar plate. The antibacterial study showed that the PANI/GS was found to be most effective against both B. subtilis and E. coli respectively which was significant compared to the amoxicillin. Beside that thin-layer of PANI/GS onto glassy carbon electrode (GCE) was fabricated with conducting 5% nafion coating agents to fabricate a sensitive and selective Cd2+ ionsic sensor in short response time into the phosphate buffer phase. The fabricated cationic-sensor was exhibited higher sensitivity, large-dynamic concentration ranges, long-term stability, and improved electrochemical performances towards Cd2+ ions. The calibration plot is linear (r2, 0.9799) over the large Cd2+ concentration ranges (10.0 nM–1.0 mM). The sensitivity and detection limit is calculated as 2.324 µA µM−1cm−2 and 6.85 nM (signal-to-noise ratio, at a SNR of 3) respectively. These novel efforts are intiated a well-known method for significant cationic sensor development with directly fabricated nanocomposite onto GCE for the detection of hazardous toxins in ecological and environmental fields in huge scales.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Syed AA, Dinesan MK (1991) Polyaniline—a novel polymeric material. Talanta 38:815–837

    Article  CAS  Google Scholar 

  2. Shreepathi S, Holze R (2005) Spectroelectrochemical investigations of soluble polyaniline synthesized via new inverse emulsion pathway. Chem Mater 17:4078–4085

    Article  CAS  Google Scholar 

  3. Ullah R, Bilal S, Ali K, Shah AHA (2014) Synthesis and characterization of polyaniline doped with Cu II chloride by inverse emulsion polymerization. Synth Met 198:113–117

    Article  CAS  Google Scholar 

  4. Zhang Y, Li Q, Sun L, Tang R, Zhai J (2010) High efficient removal of mercury from aqueous solution by polyaniline/humic acid nanocomposite. J Hazard Mater 175:404–409

    Article  CAS  Google Scholar 

  5. Sathiyanarayanan S, Karpakam V, Kamaraj K, Muthukrishnan S, Venkatachari G (2010) Sulphonate doped polyaniline containing coatings for corrosion protection of iron. Surf Coat Technol 204:1426–1431

    Article  CAS  Google Scholar 

  6. Naoi K, Sakai H, Ogano S, Osaka T (1987) Application of electrochemically formed polypyrrole in lithium secondary batteries: analysis of anion diffusion process. J Power Sources 20:237–242

    Article  CAS  Google Scholar 

  7. Blinova NV, Stejskal J, Trchová M, Sapurina I, Ciric-Marjanovic G (2009) The oxidation of aniline with silver nitrate to polyaniline–silver composites. Polymer 5050–56

    Article  CAS  Google Scholar 

  8. Cao Y, Andreatta A, Heeger AJ, Smith P (1989) Influence of chemical polymerization conditions on the properties of polyaniline. Polymer 302305–2311

  9. Adams PN, Laughlin PJ, Monkman AP, Kenwright AM (1996) Low temperature synthesis of high molecular weight polyaniline. Polymer 373411–3417

    Article  CAS  Google Scholar 

  10. Popovic MM, Grgur BN (2004) Electrochemical synthesis and corrosion behavior of thin polyaniline-benzoate film on mild steel. Synth Metals 143:191–195

    Article  CAS  Google Scholar 

  11. Cao Y, Smith P, Heeger AJ (1992) Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synth Metals. 48:91–97

    Article  CAS  Google Scholar 

  12. Cao Y, Smith P (1993) Liquid-crystalline solutions of electrically conducting polyaniline. Polymer 34:3139–3143

    Article  CAS  Google Scholar 

  13. Kim BJ, Oh SG, Han MG, Im SS (2001) Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions. Synth Metals 122:297–304

    Article  CAS  Google Scholar 

  14. Han MG, Cho SK, Oh SG, Im SS 2002 Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synth Metals 126:53–60

    Article  CAS  Google Scholar 

  15. Yu L, Lee JI, Shin KW, Parkn CE, Holze R (2003) Preparation of aqueous polyaniline dispersions by micellar-aided polymerization. J Appl Polym Sci 881550–1555

    Article  CAS  Google Scholar 

  16. Osterholm JE, Caon Y, Klavette F, Smith P (1994) Emulsion polymerization of aniline. Polymer 352902–2906

    Article  CAS  Google Scholar 

  17. Kinlen PJ, Liu J, Ding Y, Graham CRC, Remsen EE (1998) Emulsion polymerization process for organically soluble and electrically conducting polyaniline. Macromolecules 311735–1744

    Article  CAS  Google Scholar 

  18. Selvan ST, Mani A, Athinarayanasamy K, Phani KLN, Pitchumani S (1995) Synthesis of crystalline polyaniline. Mater Res Bull 30:699–705

    Article  CAS  Google Scholar 

  19. Kim J, Kwon S, Ihm DW (2007) Synthesis and characterization of organic soluble polyaniline prepared by one-step emulsion polymerization. Curr Appl Phys 7:205–210

    Article  Google Scholar 

  20. Ichinohen D, Aral T, Kise H (1997) Synthesis of soluble polyaniline in reversed micellar systems. Synth Metals 84:75–76

    Article  Google Scholar 

  21. Marie E, Rothe R, Antonietti M, Landfester K (2003) Synthesis of polyaniline particles via inverse and direct miniemulsion. Macromolecules 36:3967–3973

    Article  CAS  Google Scholar 

  22. Yang J, Ding Y, Chen G, Li C (2007) Synthesis of conducting polyaniline using novel anionic gemini surfactant as micellar stabilizer. Eur Polym J 43:3337–3343

    Article  CAS  Google Scholar 

  23. Weng B, Shepherd R, Chen J, Wallace GG (2011) Gemini surfactant doped polypyrrole nanodispersion: an inkjet printable formulation. J Mater Chem 21:1918–1924

  24. Wang Y, Wang L, Tian T, Hu X, Xu Q, Yang C (2013) Application of MWCNTs/Fe3O4 modified electrode under inducing adsorption for rapid and sensitive detection of cadmium in a lab-on-valve system. Anal Methods 51:856

    Google Scholar 

  25. Waalkes MP (2000) Cadmium carcinogenesis in review. J Inorg Biochem 79:241–244

    Article  CAS  Google Scholar 

  26. Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol. doi:10.1186/1745-6673-1-22

    Google Scholar 

  27. Wu Y, Zhan S, Wang L, Zhou P (2014) Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles. Analyst 139:1550

    Article  CAS  Google Scholar 

  28. Satarug S, Moore MR (2004) Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect 112:1099–1103

    Article  Google Scholar 

  29. Yamagami K, Nishimura S, Sorimachi M (1998) Cd2+ and Co2+ at micromolar concentrations mobilize intracellular Ca2+ via the generation of inositol 1,4,5-triphosphate in bovine chromaffin cells. Brain Res 798316–319

    Article  CAS  Google Scholar 

  30. Agency USEP (2009) National primary drinking water regulations. http://water.epa.gov/drink/contaminants

  31. Anson FC, Barclay DJ (1968) Anion induced adsorption of cadmium(II) on mercury from iodide and bromide media. Anal Chem 40:1791–1798

    Article  CAS  Google Scholar 

  32. Herman HB, McNeely RL, Surana P, Elliott CM, Murray RW (1974) Surface solubility and reaction inhibition in lead bromide and iodide adsorbed on mercury electrodes. Anal Chem 46:1258–1265

    Article  Google Scholar 

  33. Li G, Ji ZM, Wu KB (2006) Square wave anodic stripping voltammetric determination of Pb2+ using acetylene black paste electrode based on the inducing adsorption ability of I. Anal Chim Acta 577:178–182

    Article  CAS  Google Scholar 

  34. Yang ZS, Dai PP, You Y (2012) Iodide-induced adsorption of lead(II) ion on a glassy carbon electrode modified with ferroferric oxide nanoparticles. Microchim Acta 177:449–456

    Article  CAS  Google Scholar 

  35. Hwang GH, Han WK, Park JS, Kang SG (2008) Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode Talanta 76:301–308

    Article  CAS  Google Scholar 

  36. Tsai YC, Chen JM, Marken F (2005) Simple cast-deposited multi-walled carbon nanotube/nafion (TM) thin film electrodes for electrochemical stripping analysis. Microchim Acta 150:269–276

    Article  CAS  Google Scholar 

  37. Wu KB, Hu SS, Fei JJ, Bai W (2003) Mercury-free simultaneous determination of Cd2+ and Pb2+ at a glassy carbon electrode modified with multi-wall carbon nanotubes. Anal Chim Acta 489:215–221

    Article  CAS  Google Scholar 

  38. Tsai YC, Chen JM, Li SC, Marken F (2004) Electroanalytical thin film electrodes based on a Nafion(TM)—multi-walled carbon nanotube composite. Electrochem Commun 6:917–922

    Article  CAS  Google Scholar 

  39. Yi HC (2003) Anodic stripping voltammetric determination of mercury using multi-walled carbon nanotubes film coated glassy carbon electrode. Anal Bioanal Chem 377:770–774

    Article  CAS  Google Scholar 

  40. Lu TL, Tsai YC (2011) Sensitive electrochemical determination of acetaminophen in pharmaceutical formulations at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified electrode. Sens Actuators B 153:439–444

    Article  CAS  Google Scholar 

  41. Qu S, Wang J, Kong JL, Yang PY, Chen G (2007) Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta 71:1096–1102

    Article  CAS  Google Scholar 

  42. Zana R, Benrraou M, Rueff R (1991) Alkanediyl-alpha,omega-bis(dimethylalkylammonium bromide) surfactants 1 Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 7:1072–1075

    Article  CAS  Google Scholar 

  43. Azum N, Asiri AM, Rub MA, Khan AAP, Khan A, Rahman MM, Kumar D, Al-Youbi AO (2013) Mixed micellization of gemini surfactant with nonionic surfactant in aqueous media: a fluorometric study. Colloid J 75:235–240

    Article  CAS  Google Scholar 

  44. Yan F, Xue G (1999) Synthesis and characterization of electrically conducting polyaniline in water–oil microemulsion. J Mater Chem 9:3035

    Article  CAS  Google Scholar 

  45. Rahman MM, Khan SB, Asiri AM (2014) Fabrication of smart chemical sensors based on transition-doped-semiconductor nanostructure materials with µ-chips. PLoS ONE 9:e85036

    Article  Google Scholar 

  46. Cheng XL, Zhao H, Huo LH, Gao S, Zhao JG (2004) ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property. Sens Actuator B 102:248

    Article  CAS  Google Scholar 

  47. Srivastava JK, Pandey P, Mishra VN, Dwivedi R (2011) Structural and micro structural studies of PbO-doped SnO2 sensor for detection of methanol, propanol and acetone. J Nat Gas Chem 20179

    Article  CAS  Google Scholar 

  48. Rahman MM, Khan SB, Asiri AM (2015) A microchip based fluoride sensor based on the use of CdO doped ferric oxide nanocubes. Microchim Acta 182:487–494

    Article  CAS  Google Scholar 

  49. Rahman MM, Khan SB, Asiri AM (2013) Chemical sensor development based on polycrystalline gold electrode embedded low-dimensional Ag2O nanoparticles. Electrochim Acta 112:422–430

    Article  CAS  Google Scholar 

  50. Rahman MM, Jamal A, Khan SB, Faisal M (2011) Fabrication of highly sensitive ethanol chemical sensor based on Sm-doped Co3O4 nano-kernel by solution method. J Phys Chem C 115:9503–9510

    Article  CAS  Google Scholar 

  51. Rahman MM, Jamal A, Khan SB, Faisal M (2011) Cu-doped ZnO based nanostructured materials for sensitive chemical sensor applications. ACS App Mater Interfaces 3:1346–1351

    Article  CAS  Google Scholar 

  52. Masoumi A, Gargari MS, Mahmoudi G, Miroslaw B, Therrien B, Abedi M, Hazendonk P (2015) Structural diversity in mercury(II) coordination complexes with asymmetrical hydrazone-based ligands derived from pyridine. J Mol Struct 1088:64–69

    Article  CAS  Google Scholar 

  53. Rahman MM, Khan SB, Asiri AM, Alamry KA, Khan AAP, Khan A, Rub MA, Azum N (2013) Acetone sensor based on solvothermally prepared ZnO doped with Co3O4 nanorods. Microchim Acta 180:675–685

    Article  CAS  Google Scholar 

  54. Rahman MM, Jamal A, Khan SB, Faisal M, Asiri AM (2012) Highly sensitive methanol chemical sensor based on undoped silver oxide nanoparticles prepared by a solution method. Microchim Acta 178:99–106

    Article  CAS  Google Scholar 

  55. Rahman MM, Khan SB, Gruner G, Al-Ghamdi MS, Daous MA, Asiri AM (2013) Chloride ion sensors based on low-dimensional α-MnO2-Co3O4 nanoparticles fabricated glassy carbon electrodes by simple I–V Technique. Electrochim Acta 103:143–150

    Article  CAS  Google Scholar 

  56. Rahman MM, Jamal A, Khan SB, Faisal M (2011) Highly sensitive ethanol chemical sensor based on ni-doped SnO2 nanostructure Materials. Biosens Bioelectron 28:127–134

    Article  CAS  Google Scholar 

  57. Khan A, Khan AAP, Rahman MM, Asiri AM, Al Youbi AO (2015) Toward designing efficient rice-shaped polyaniline@bismuth oxide nanocomposites for sensor application. J Sol Gel Sci Technol 76:519–528

    Article  CAS  Google Scholar 

  58. Khan AAP, Khan A, Rahman MM, Asiri AM (2016) Conventional surfactant-doped poly (o-anisidine)/GO nanocomposites for benzaldehyde chemical sensor development. J Sol Gel Sci Technol 77:361–370

    Article  CAS  Google Scholar 

  59. Arshad MN, Tahir SA, Rahman MM, Asiri AM, Marwany HM, Awual MR (2017) Fabrication of cadmium ionic sensor based on (E)-4-Methyl-N’-(1-(pyridin-2-yl)ethylidene) benzenesulfonohydrazide (MPEBSH) by electrochemical approach. J Organomet Chem 827:49–55

    Article  CAS  Google Scholar 

  60. Khan SB, Rahman MM, Asiri AM, Marwani HM, Alamry KA (2013) An assessment of zinc oxide nanosheets as a selective adsorbent for cadmium. Nanoscale Res Lett 8:377

    Article  Google Scholar 

  61. Khan AAP, Khan A, Rahman MM, Asiri AM, Oves M (2016) Lead sensors development and antimicrobial activities based on graphene oxide/carbon nanotube/poly(O-toluidine) nanocomposite. Int J Biol Macromol 89:198–205

    Article  CAS  Google Scholar 

  62. Khan AAP, Khan A, Rahman MM, Asiri AM, Oves M (2017) Sensor development of 1,2 dichlorobenzene based on polypyrole/Cu-doped ZnO (PPY/CZO) nanocomposite embedded silver electrode and their antimicrobial studies. Int J Biol Macromol 98:256–267

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Center of Excellence for Advanced Materials Research (CEAMR), Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia is highly acknowledged for financial supports and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aftab Aslam Parwaz Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.A.P., Khan, A., Rahman, M.M. et al. Chemical Sensor Development and Antibacterial Activities Based on Polyaniline/Gemini Surfactants for Environmental Safety. J Polym Environ 26, 1673–1684 (2018). https://doi.org/10.1007/s10924-017-1055-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1055-9

Keywords

Navigation