Skip to main content
Log in

Expanded Graphite Modified by CTAB-KBr/H3PO4 for Highly Efficient Adsorption of Dyes

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Expanded graphite (EG) modified by CTAB-KBr/H3PO4 was synthesized via composite intercalation agent of CTAB-KBr and natural flake graphite, followed by the activation of phosphoric acid under low temperature. The resultant modified expanded graphite (M-EG) architectures showed an interconnected and continuous open microstructure, in which the number, size and volume of the pores were larger than the EG before modification. Due to their unique structural characteristics, the resulting M-EG exhibited a wide applicability and superior adsorption capacity toward dyes. The saturated adsorption capacities of M-EG were as large as 159.71 mg/g for acid brilliant blue, 48.06 mg/g for methylene blue, 56.73 mg/g for disperse yellow and 81.73 mg/g for acid red with the time of 40, 60, 50 and 50 min respectively, exceeding largely the corresponding pristine EG. Furthermore, it is surprising that the M-EG under different adsorption conditions of temperature, initial pH and metal ions still maintain good removal efficiency and more importantly, the M-EG can be easily separated and do not generate secondary contaminants. Adsorption dynamics indicated pseudo second-order model was more suitable for the investigated adsorption process, which is controlled by chemical adsorption involving uptake of acid brilliant blue onto M-EG through functional groups, but not the only factor. Adsorption isotherm indicated the adsorption process from Langmuir model to Temkin model. According to Dubinin–Radushkevich model, the calculated mean free energy implied chemisorption between M-EG and acid brilliant blue. High removal capability, fast adsorption efficiency, excellent stability and broad applicability make M-EG ideal candidates for dyes removal in practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. El-Ashtoukhy ESZ, Amin NK (2010) J Hazard Mater 179:113

    Article  CAS  Google Scholar 

  2. Bruggen BVD, Curcio E, Drioli E (2004) J Environ Manage 73:267

    Article  Google Scholar 

  3. Bhatnagar A, Minocha AK (2010) Environ Technol 31:97

    Article  CAS  Google Scholar 

  4. Kim TH, Park C, Shin EB et al (2002) Desalination 150:165

    Article  CAS  Google Scholar 

  5. Alinsafi A, Motta MD, Bonté SL et al (2006) Dyes Pigments 69:31

    Article  CAS  Google Scholar 

  6. Daneshvar N, Salari D, Niaei A et al (2005) J Environ Sci 40:1605

    CAS  Google Scholar 

  7. Fu Y, Viraraghavan T (2001) Bioresour Technol 79:251

    Article  CAS  Google Scholar 

  8. Iqbal M, Saeed A (2009) New Biotechnol 25:167

    Article  Google Scholar 

  9. Al-Degs YS, Khraisheh MAM, Allen SJ et al (2008) J Hazard Mater 165:944

    Article  Google Scholar 

  10. Mui ELK, Cheung WH, Valix M et al (2010) J Hazard Mater 177:1001

    Article  CAS  Google Scholar 

  11. Pasukphun N, Vinitnantharat S, Gheewala S (2010) Pak J Biol Sci 13:316

    Article  CAS  Google Scholar 

  12. Robinson T, Mcmullan G, Marchant R et al (2001) Bioresour Technol 77:247

    Article  CAS  Google Scholar 

  13. Daneshvar N, Salari D, Khataee AR (2003) J Photochem Photobiol Chem 157:111

    Article  CAS  Google Scholar 

  14. Verma AK, Dash RR, Bhunia P (2012) J Environ Manage 93:154

    Article  CAS  Google Scholar 

  15. Chen JZ, Yan YC, Lin KJ (2010) J Chin Chem Soc 57:1180

    Article  CAS  Google Scholar 

  16. Chen LC, Huang CJ (2015) Mater Sci Semicond Process 35:162

    Article  Google Scholar 

  17. Teplykh AE, Bogdanov SG, Dorofeev YA et al (2006) Crystallogr Rep 51:62

    Article  Google Scholar 

  18. Zhang F, Zhao Q, Yan X et al (2016) Food Chem 197:943

    Article  CAS  Google Scholar 

  19. Ding X, Wang R, Zhang X et al (2014) Mar Pollut Bull 81:185

    Article  CAS  Google Scholar 

  20. Zhou YY, Wang SW, Kim KN et al (2006) Talanta 69:970

    Article  CAS  Google Scholar 

  21. Wang HM (2012) Adv Mater Res 496:391

    Article  CAS  Google Scholar 

  22. Goshadrou A, Moheb A (2011) Desalination 269:170

    Article  CAS  Google Scholar 

  23. Tan SC, Shi PH, Su RJ et al (2012) Adv Mater Res 425:1313

    Article  Google Scholar 

  24. Li M, Li JT, Sun HW (2008) Ultrason Sonochem 15:37

    Article  Google Scholar 

  25. Anastopoulos I, Kyzas GZ (2014) J Mol Liq 200:381

    Article  CAS  Google Scholar 

  26. Yuhshan H (2004) Scientometrics 59:171

    Article  Google Scholar 

  27. Ho YS, Mckay G (1999) Process Biochem 34:451

    Article  CAS  Google Scholar 

  28. Kyzas GZ, Matis KA (2015) J Mol Liq 203:159

    Article  CAS  Google Scholar 

  29. Langmuir I (1917) J Am Chem Soc 38:102

    Google Scholar 

  30. Khan TA, Khan EA, Shahjahan (2016) J Environ Chem Eng 43:3084

    Article  Google Scholar 

  31. Allen SJ, Mckay G, Porter JF (2004) J Colloid Interface Sci 280:322

    Article  CAS  Google Scholar 

  32. Dubinin MM, Radushkevich LV, Dubinin MM et al (1946) Zhurnal Nevropatologii I Psikhiatrii Imeni Sskorsakova 79:843

    Google Scholar 

  33. Liu GQ, Yan M (2002) New Carbon Mater 17:13

    CAS  Google Scholar 

  34. Smith DK, Korgel BA (2008) Langmuir 24:644

    Article  CAS  Google Scholar 

  35. Sirimuangjinda A, Hemra K, Atong D et al (2012) Asian J Chem 506:214

    CAS  Google Scholar 

  36. ShadeeraRouf, Nagapadma M (2015) Int J Eng Res Appl 5:76

    Google Scholar 

  37. Li JT, Li M, Li JH et al (2007) Ultrason Sonochem 14:62

    Article  CAS  Google Scholar 

  38. Jović-Jovičić NP, Milutinović-Nikolić AD, Žunić MJ et al (2013) J Contam Hydrol 150:1

    Article  Google Scholar 

  39. Mahmoud ME, Nabil GM, El-Mallah NM et al (2016) J Ind Eng Chem 37:156

    Article  CAS  Google Scholar 

  40. Bai H, Zhang Q, He T et al (2016) Appl Clay Sci 124–125:157

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by BUCT Fund for Disciplines Construction and Development (Project No. DCD XK1503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aijun Lin.

Additional information

Congbin Xu and Huili Wang contributed equally to this work and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Wang, H., Yang, W. et al. Expanded Graphite Modified by CTAB-KBr/H3PO4 for Highly Efficient Adsorption of Dyes. J Polym Environ 26, 1206–1217 (2018). https://doi.org/10.1007/s10924-017-1019-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1019-0

Keywords

Navigation