Skip to main content
Log in

One-Component Spray Polyurethane Foam from Liquefied Pinewood Polyols: Pursuing Eco-Friendly Materials

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The use of petroleum-derived products should be avoided regarding the principles of green and sustainable chemistry. The work reported herein, is aimed at the liquefaction of pine shavings for the production of an environmentally-friendly polyol suitable to be used in the formulations of sprayable polyurethane foams. The biopolyols were obtained in high yield and were used to replace those derived from fossil sources, to produce more “greener” polyurethane foams and therefore, less dependent on petroleum sources, since the polyol component was substituted by products resulting from biomass liquefaction. The partial and fully exchange of the polyols was accomplished, and the results compared with a reference foam. The foams were afterward, chemical, physical, morphological, and mechanically characterized. The complete replacement of polyether polyol and polyol polyester has presented some similar characteristics as that used as a reference, validating that the path chosen for the development of more sustainable materials is on the right track for the contribution to a cleaner world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. King D (2010) The Future of industrial biorefineries. World Economic Forum White Paper, Cologny/Geneva

    Google Scholar 

  2. Karger-Kocsis J (2011) Liquefaction of plant biomass for use in polymers—is it the right strategy? Express Polym Lett 5:92–92. doi:10.3144/expresspolymlett.2011.10

    Article  Google Scholar 

  3. Ma L, Wang T, Liu Q et al (2012) A review of thermal–chemical conversion of lignocellulosic biomass in China. Biotechnol Adv 30:859–873. doi:10.1016/j.biotechadv.2012.01.016

    Article  CAS  Google Scholar 

  4. Gama NV, Soares B, Freire CSR, et al (2015) Bio-based polyurethane foams toward applications beyond thermal insulation. Mater Des 76:77–85. doi:10.1016/j.matdes.2015.03.032

    Article  CAS  Google Scholar 

  5. Soares B, Gama N, Freire C et al (2014) Ecopolyol production from industrial cork powder via acid liquefaction using polyhydric alcohols. ACS Sustain. Chem Eng 2:846–854. doi:10.1021/sc400488c

    Article  CAS  Google Scholar 

  6. Bordado JC, Silva E, dos Santos RG, et al (2015) WO2015034383—Two-component natural polymeric water-based glues, obtained from derivatives of cork.

  7. Pan H (2011) Synthesis of polymers from organic solvent liquefied biomass: a review. Renew Sustain Energy Rev 15:3454–3463. doi:10.1016/j.rser.2011.05.002

    Article  CAS  Google Scholar 

  8. Jasiukaityte E, Kunaver M, Strlic M (2009) Cellulose liquefaction in acidified ethylene glycol. Cellulose 16:393–405. doi:10.1007/s10570-009-9288-y

    Article  CAS  Google Scholar 

  9. Mateus MM, Carvalho R, Bordado JC, dos Santos RG (2015) Biomass acid-catalyzed liquefaction—Catalysts performance and polyhydric alcohol influence. Data Br 5:736–738. doi:10.1016/j.dib.2015.10.037

    Article  Google Scholar 

  10. Hassan EM, Shukry N (2008) Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues. Ind Crops Prod 27:33–38. doi:10.1016/j.indcrop.2007.07.004

    Article  CAS  Google Scholar 

  11. Krzan A, Kunaver M (2006) Microwave heating in wood liquefaction. J Appl Polym Sci 101:1051–1056. doi:10.1002/app.23488

    Article  CAS  Google Scholar 

  12. dos Santos RG, Bordado JC, Mateus MM (2015) Microwave-assisted liquefaction of cork—from an industrial waste to sustainable chemicals. Ind Eng Manag 4:173–177. doi:10.4172/2169-0316.1000173

    Article  Google Scholar 

  13. Mateus MM, Acero NF, Bordado JC, dos Santos RG (2015) Sonication as a foremost tool to improve cork liquefaction. Ind Crop Prod 74:9–13. doi:10.1016/j.indcrop.2015.04.063

    Article  CAS  Google Scholar 

  14. García A, Alriols MG, Llano-Ponte R, Labidi J (2011) Ultrasound-assisted fractionation of the lignocellulosic material. Bioresour Technol 102:6326–6330. doi:10.1016/j.biortech.2011.02.045

    Article  Google Scholar 

  15. Kunaver M, Jasiukaitytė E, Čuk N (2012) Ultrasonically assisted liquefaction of lignocellulosic materials. Bioresour Technol 103:360–366. doi:10.1016/j.biortech.2011.09.051

    Article  CAS  Google Scholar 

  16. Roslan R, Zakaria S, Chia CH et al (2014) Physico-mechanical properties of resol phenolic adhesives derived from liquefaction of oil palm empty fruit bunch fibres. Ind Crops Prod 62:119–124. doi:10.1016/j.indcrop.2014.08.024

    Article  CAS  Google Scholar 

  17. dos Santos RG, Carvalho R, Silva ER et al (2016) Natural polymeric water-based adhesive from cork liquefaction. Ind Crops Prod 84:314–319. doi:10.1016/j.indcrop.2016.02.020

    Article  Google Scholar 

  18. Gama NV, Soares B, Freire CSR et al (2015) Rigid polyurethane foams derived from cork liquefied at atmospheric pressure. Polym Int 64:250–257. doi:10.1002/pi.4783

    Article  CAS  Google Scholar 

  19. Hu S, Luo X, Li Y (2014) Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. ChemSusChem 7:66–72. doi:10.1002/cssc.201300760

    Article  CAS  Google Scholar 

  20. Seljak T, Oprešnik SR, Kunaver M, Katrašnik T (2012) Wood, liquefied in polyhydroxy alcohols as a fuel for gas turbines. Appl Energy 99:40–49. doi:10.1016/j.apenergy.2012.04.043

    Article  CAS  Google Scholar 

  21. Briones R, Serrano L, Llano-Ponte R, Labidi J (2011) Polyols obtained from solvolysis liquefaction of biodiesel production solid residues. Chem Eng J 175:169–175. doi:10.1016/j.cej.2011.09.090

    Article  CAS  Google Scholar 

  22. dos Santos RG, Bordado JC, Mateus MM (2016) Thermochemical liquefaction of swine manure as feedstock for the production of a potential biofuel. Innov. Energy Res.

  23. Mateus MM, Bordado JC, dos Santos RG (2016) Potential biofuel from liquefied cork—higher heating value comparison. Fuel 174:114–117. doi:10.1016/j.fuel.2016.01.081

    Article  CAS  Google Scholar 

  24. Briones R, Serrano L, Labidi J (2012) Valorization of some lignocellulosic agro-industrial residues to obtain biopolyols. J Chem Technol Biotechnol 87:244–249. doi:10.1002/jctb.2706

    Article  CAS  Google Scholar 

  25. Yona AMC, Budija F, Kričej B et al (2014) Production of biomaterials from cork: liquefaction in polyhydric alcohols at moderate temperatures. Ind Crops Prod 54:296–301. doi:10.1016/j.indcrop.2014.01.027

    Article  CAS  Google Scholar 

  26. Wang H, Chen H-Z (2007) A novel method of utilizing the biomass resource: rapid liquefaction of wheat straw and preparation of biodegradable polyurethane foam (PUF). J Chinese Inst. Chem Eng 38:95–102. doi:10.1016/j.jcice.2006.10.004

    Article  Google Scholar 

  27. Hu S, Li Y (2014) Polyols and polyurethane foams from base-catalyzed liquefaction of lignocellulosic biomass by crude glycerol: effects of crude glycerol impurities. Ind Crops Prod 57:188–194. doi:10.1016/j.indcrop.2014.03.032

    Article  CAS  Google Scholar 

  28. Cheumani-Yona AM, Budija F, Hrastnik D et al (2015) Preparation of Two-Component Polyurethane Coatings from Bleached Liquefied Wood. BioResources 10(2):3347–3363

    Article  Google Scholar 

  29. De Schrijver A (2012) The foam manual: polyurethane foam systems for professionals and DIY, 2nd edn.

  30. Marques AC, Dias H, Matos S et al (2016) Polyurethane one-component foam formulation optimization for low free isocianate monomer content. J Cell Plast. doi:10.1177/0021955X16639230

    Google Scholar 

  31. Galhano dos Santos R, Bordado JC, Mateus MM (2016) Potential biofuels from liquefied industrial wastes—preliminary evaluation of heats of combustion and van Krevelen correlations. J Clean Prod. doi:10.1016/j.jclepro.2016.07.082

    Google Scholar 

  32. Lee S-H, Teramoto Y, Shiraishi N (2002) Biodegradable polyurethane foam from liquefied waste paper and its thermal stability, biodegradability, and genotoxicity. J Appl Polym Sci 83:1482–1489. doi:10.1002/app.10039

    Article  CAS  Google Scholar 

  33. Xie J, Zhai X, Hse C et al (2015) Polyols from microwave liquefied bagasse and its application to rigid polyurethane foam. Materials (Basel) 8:5472

    Article  Google Scholar 

  34. Grilc M, Veryasov G, Likozar B et al (2015) Hydrodeoxygenation of solvolysed lignocellulosic biomass by unsupported MoS2, MoO2, Mo2C and WS2 catalysts. Appl Catal B Environ 163:467–477. doi:10.1016/j.apcatb.2014.08.032

    Article  CAS  Google Scholar 

  35. Grilc M, Likozar B, Levec J (2014) Hydrotreatment of solvolytically liquefied lignocellulosic biomass over NiMo/Al2O3 catalyst: reaction mechanism, hydrodeoxygenation kinetics and mass transfer model based on FTIR. Biomass Bioenergy 63:300–312. doi:10.1016/j.biombioe.2014.02.014

    Article  CAS  Google Scholar 

  36. Xiao B, Sun XF, Sun R (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stab 74:307–319. doi:10.1016/S0141-3910(01)00163-X

    Article  CAS  Google Scholar 

  37. Cengiz M, Dincturk OD, Sahin HT (2010) Fractional extraction and structural characterization of opium poppy and cotton stalks hemicelluloses. Pharmacogn Mag 6:315–319. doi:10.4103/0973-1296.71798

    Article  CAS  Google Scholar 

  38. Sun JX, Mao FC, Sun XF, Sun R (2005) Comparative study of hemicelluloses isolated with alkaline peroxide from lignocellulosic materials. J Wood Chem Technol 24:239–262. doi:10.1081/WCT-200038170

    Article  Google Scholar 

  39. van Putten R-J, van der Waal JC, de Jong E et al (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597. doi:10.1021/cr300182k

    Article  Google Scholar 

  40. Tay GS, Ong LN, Rozman HD (2012) Mechanical properties and fire retardant behavior of polyurethane foam reinforced with oil palm empty fruit bunch. J Appl Polym Sci 125:158–164. doi:10.1002/app.35568

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R. Galhano dos Santos and A. C. Marques would like to acknowledge FCT—Fundação para a Ciência e Tecnologia for the Postdoctoral Grants SFRH/BPD/105662/2015 and SFRH/BPD/96697/2013, respectively. We are grateful to Prof. Fátima Vaz for performing the mechanical tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Galhano dos Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galhano dos Santos, R., Acero, N.F., Matos, S. et al. One-Component Spray Polyurethane Foam from Liquefied Pinewood Polyols: Pursuing Eco-Friendly Materials. J Polym Environ 26, 91–100 (2018). https://doi.org/10.1007/s10924-016-0931-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0931-z

Keywords

Navigation