Skip to main content
Log in

The Gene of Aspergillus oryzae Involved in Degradation of Formaldehyde and Formaldehyde Degradation in Vapour Phase by Porous Enzyme/Chitosan Nanofibre Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs) are toxic chemicals, detrimental to humans and the environment. Currently, there is no fully satisfactory method for VOC removal from indoor air. Formaldehyde, a well-known and ubiquitously present VOC, should be removed because of its various adverse effects on human health. In this study, we developed a method for removal of formaldehyde using porous enzyme/chitosan nanofibre composites. To identify the gene for a formaldehyde-degrading enzyme, we examined the involvement of the alcohol dehydrogenase gene (alcA) of Aspergillus oryzae in formaldehyde degradation. Using an alcA-disrupted strain, we found that formaldehyde degradation was lower in this mutant strain than in the control strain, suggesting that this enzyme played an essential role in formaldehyde degradation. Next, we assessed the ability of the crude enzyme extracted from A. oryzae to degrade formaldehyde in vitro. The enzyme showed a formaldehyde degradation rate of 50 ppm in 30 h. We then produced porous enzyme/chitosan nanofibre composites by mixing the crude enzyme and a 10% (w/v) chitosan nanofibre suspension, followed by freeze-drying. Characterization of the enzyme/chitosan nanofibre composites was carried out by X-ray photoelectron spectroscopy. Formaldehyde degradation tests were carried out using porous chitosan nanofibre and porous enzyme/chitosan nanofibre composites. Based on this analysis, we found that the porous enzyme/chitosan nanofibre composites showed a greater formaldehyde degradation ability than that of the porous chitosan nanofibres. When using the porous enzyme/chitosan nanofibre composites, formaldehyde was efficiently removed via enzymatic degradation and chemical adsorption by chitosan. These findings suggested that porous enzyme/chitosan nanofibre composites have a high capacity for the degradation of formaldehyde in the vapour phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tang X, Bai Y, Duong A, Smith MT, Li L, Zhang L (2009) Environ Int 35:1210–1224

    Article  CAS  Google Scholar 

  2. Adroer N, Casas C, Demas C, Solà C (1990) Microbiol Biotechnol 33:217–220

    Article  CAS  Google Scholar 

  3. Peng G, Yokoyama K, Fengyuan P, Sakai K, Md K, Kamijima M, Nakajima T, Kitamura F (2013) J Environ Res Public Health 10:1489–1504

    Article  Google Scholar 

  4. International Agency for Research on Cancer (2012) IARC monographs on the evaluation of carcinogenic risks to humans, vol 100F. WHO press, Geneva

  5. Taoda H (2008) Res Chem Intermed 34:417–426

    Article  CAS  Google Scholar 

  6. Jiangxue W, Yubo F (2014) Int J Mol Sci 15:22258–22278

    Article  Google Scholar 

  7. Huang Y, Ho SS, Lu Y, Niu R, Xu L, Cao J, Lee S (2016) Molecules 21:56

    Article  Google Scholar 

  8. Minemura A, Kitamura R, Sano M, Osawa S, Jpn J (2015) Water Treat Biol 51:69–73

    Google Scholar 

  9. Minemura A, Kitamura R, Morimoto Y, Osawa S (2016) Mater Technol 34:43–50

    Google Scholar 

  10. Tanida I, Sakaue A, Osawa S (2014) J Polym Environ 22:329–335

    Article  CAS  Google Scholar 

  11. Machida M, Yamada O, Gomi K (2008) DNA Res 15:173–183

    Article  CAS  Google Scholar 

  12. Juang RS, Wu FC, Tseng RL (2001) Bioresour Technol 80:187–193

    Article  CAS  Google Scholar 

  13. Johnson PA, Park HJ, Driscoll AJ (2011) Methods Mol Biol 679:183–191

    Article  CAS  Google Scholar 

  14. Wada T, Uragami T, Matoba T (2005) JCT Res 7:577–592

    Google Scholar 

  15. Tang ZX, Qian JQ, Shi LE (2007) Biochem Biotechnol 136:77–96

    Article  CAS  Google Scholar 

  16. Bhaskara R, Chandra PS (1997) J Biomed Mater Res 34:21–28

    Article  Google Scholar 

  17. Ma M, Wang X, Zhang X, Zhao X (2013) Microbiol Biotechnol 97:8411–8425

    Article  CAS  Google Scholar 

  18. Tamano K, Satoh Y, Ishii T, Terabayashi Y, Ohtaki S, Sano M, Takahashi T, Koyama Y, Mizutani O, Abe K, Machida M (2007) Biotechnol Biochem 71:926–934

    Article  CAS  Google Scholar 

  19. Kobayashi A, Sano M, Oda K, Hisada H, Hata Y, Ohashi S (2007) Biosci Biotechnol Biochem 71:1797–1799

    Article  CAS  Google Scholar 

  20. Nash T (1953) Biochem J 55:416–421

    Article  CAS  Google Scholar 

  21. Kobayashi T, Abe K, Asai K, Gomi K, Praveen RJ, Kato M, Kitamoto K, Takeuchi M, Machida M (2007) Biosci Biotechnol Biochem 71:646–670

    Article  CAS  Google Scholar 

  22. Ifuku S, Yamada K, Morimoto M, Saimoto H (2012) J Nanomater 2012:1–7

    Article  Google Scholar 

  23. Dutta AK, Kawamoto N, Sugino G, Izawa H, Morimoto M, Saimoto H, Ifuku S (2013) Int J Biol Macromol 97:363–367

    CAS  Google Scholar 

  24. Aklog YF, Dutta AK, Izawa H, Morimoto M, Saimoto H, Ifuku S (2015) Int J Biol Macromol 71:1191–1195

    Article  Google Scholar 

  25. Ifuku S (2014) Molecules 19:18367–18380

    Article  Google Scholar 

  26. Krasňan V, Stloukal R, Rosenberg M, Rebroš M (2016) Microbiol Biotechnol 100:2535–2553

    Article  Google Scholar 

  27. Tsutsumi H, Mihara Y, Ogawa N, Hoshino T, Kumagai T, Yokota K (2005) Yakugaku 125:517–523

    Article  CAS  Google Scholar 

  28. Lee B, Yurimoto H, Sakai Y, Kato N (2002) Microbiology 148:2697–2704

    Article  CAS  Google Scholar 

  29. Sahm H (2005) Biochem Eng 6:77–103

    Google Scholar 

  30. Witthoff S, Schmitz K, Niedenführ S, Nöh K, Noack S, Bott M, Marienhagen J (2015) Environ Microbiol 81:2215g–2225g

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Centre of Innovation Program of the Japan Science and Technology Agency, JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Osawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minemura, A., Kitamura, R., Sano, M. et al. The Gene of Aspergillus oryzae Involved in Degradation of Formaldehyde and Formaldehyde Degradation in Vapour Phase by Porous Enzyme/Chitosan Nanofibre Composites. J Polym Environ 25, 1273–1279 (2017). https://doi.org/10.1007/s10924-016-0899-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0899-8

Keywords

Navigation