Skip to main content
Log in

Fabrication and Characterization of Polyaniline Based Nano-Composite with Their Physico-Chemical and Environmental Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A series of organic–inorganic conducting nano polymer-matrix composite cation-exchanger have been synthesized via sol–gel method and characterized through FTIR, XRD, TGA-DTA, SEM, and TEM studies. The structural studies confirm the semi-crystalline nature of the material but the morphology of the exchanger gets changed after incorporation of inorganic moiety. The particle size of the nano-composite was found to be 19.2 nm. The observed band gap for the different samples was found to be in the range of 3.70–4.61 eV which shows that nano-composite material covers semiconducting range but the resistivity of samples is highly dependent on the percentage of inorganic part in the composite. Further the oxidative degradation of the polymer backbone begins after the removal of trapped water successively followed by dopant and low molecular weight oligomers. During the antimicrobial screening, the nano-composite was found to be active against different strains of bacteria and fungi. Gel electrophoresis and molecular docking studies were carried out to check the interaction and mechanism of inhibition of microbial growth, respectively by studying the effect of the nano-composite with DNA-Topoisomerase-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lagashetty A, Venkataraman A (2005) Polymer nano-composites. Resonance 5:49–60

    Article  Google Scholar 

  2. Ventra MD, Evoy S, Heflin JR (2004) Introduction to nanoscale science and technology. Kluwer academic publishers, Berlin

    Book  Google Scholar 

  3. Aoshima S, Costa FR, Fetters LJ, Heinrich G, Kanaoka S, Radulescu A, Richter D, Saphiannikova M, Wagenknecht U (2008) Advances in Polymer Science. Springer, Berlin Heidelberg

    Google Scholar 

  4. Jiang J, Li L, Zhu M (2008) Polyaniline/magnetic ferrite nano-composites obtained by in situ polymerization. React Funct Polym 68:57–62

    Article  CAS  Google Scholar 

  5. Li L, Jiang J, Xu F (2007) Synthesis and ferrimagnetic properties of novel Sm-substituted LiNi ferrite–polyaniline nano-composite. Mater Lett 61:1091–1096

    Article  CAS  Google Scholar 

  6. Mathur R, Sharma DR, Vadera SR, Kumar N (2001) Doping of emeraldine base with the monovalent bridging iron oxalate ions and their transformation into nanostructured conducting polymer composites. Acta Mater 49:181–187

    Article  CAS  Google Scholar 

  7. Li L, Liu H, Wang Y, Jiang J, Xu F (2008) Preparation and magnetic properties of Zn–Cu–Cr–La ferrite and its nano-composites with polyaniline. J Colloid Interface Sci 321:265–271

    Article  CAS  Google Scholar 

  8. MacDiarmid AG, Epstein AJ (1995) Secondary doping in polyaniline. Synth Met 69:85–92

    Article  CAS  Google Scholar 

  9. Aphesteguy JC, Jacobo SE (2004) Composite of polyaniline containing iron oxides. Phys B 354:224–227

    Article  Google Scholar 

  10. Moghaddam AB, Nazari T (2008) Preparation of polyaniline/nanometer-scale alumina composite by the potential cycling method. Int J Electrochem Sci 3:768–776

    CAS  Google Scholar 

  11. Sarac AS, Ates M, Kilic B (2008) Electrochemical impedance spectroscopic study of polyaniline on platinum, glassy carbon, and carbon fiber microelectrodes. Int J Electrochem Sci 3:777–786

    CAS  Google Scholar 

  12. Chan HSO, Ng SC, Sim WS, Tan KL, Tan BTG (1992) Preparation and characterization of electrically conducting polymer of aniline and anthranilic acid: evidence for self -doping by XPS. Macromolecules 25:6029–6034

    Article  CAS  Google Scholar 

  13. Salaneck WR, Lundstrom I, Ranby B (1993) Conjugated polymers and related materials. University Press, Oxford, p 65

    Google Scholar 

  14. Skotheim TA (1986) Handbook of conducting polymers. Dekker, New York

    Google Scholar 

  15. Vatutsina OM, Soldatov VS, Sokolova VI, Johann J, Bissen M, Weissenbacher A (2007) A new hybrid (polymer/inorganic) fibrous sorbent for arsenic removal from drinking water. Funct Polym 67:184–201

    Article  CAS  Google Scholar 

  16. Nabi SA, Shahadat M, Bushra R, Shalla AH, Ahmed F (2010) Heavy-metals separation from industrial effluent, natural water as well as from synthetic mixture using synthesized novel composite adsorbent. Chem Eng J 165:405–412

    Article  CAS  Google Scholar 

  17. Arrad O, Sasson Y (1989) Commercial ion exchange resins as catalysts in solid–solid–liquid reactions. J Org Chem 54:4993–4998

    Article  CAS  Google Scholar 

  18. Khan AA (2006) Application of Hg(II) Sensitive polyaniline Sn(IV) phosphate composite cation exchange material in determination of Hg2+ from aqueous solutions and in making ion selective membrane electrode. Sens Actuators, B 120:10–18

    Article  CAS  Google Scholar 

  19. Liang X, Sun M, Li L, Qiao R, Chen K, Xiao Q, Xu F (2012) Preparation and antibacterial activities of polyaniline/Cu0.05Zn0.95O nanocomposites. Dalton Trans 41(9):2804–2811. doi:10.1039/c2dt11823h

    Article  CAS  Google Scholar 

  20. Sharma R, Kalia S, Kaith BS et al (2016) Ggum-poly(itaconic acid) based superabsorbents via two-step free-radical aqueous polymerization for environmental and antibacterial applications. J Polym Environ. doi:10.1007/s10924-016-0796-1

    Google Scholar 

  21. Bushra R, Shahadat M, Khan MA et al (2015) Int J Environ Sci Technol 12:3635. doi:10.1007/s13762-014-0726-5

    Article  CAS  Google Scholar 

  22. Raman NK, Anderson MT, Brinker CJ (1996) Template-based approaches to the preparation of amorphous, nanoporous silicas. Chem Mater 8:1682–1701

    Article  CAS  Google Scholar 

  23. Singhal SC (2002) Solid oxide fuel cells for stationary, mobile and military applications. Solid State Ion 152:405–410

    Article  Google Scholar 

  24. Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76:563–588

    Article  CAS  Google Scholar 

  25. Maskell WC (2000) Progress in the development of zirconia gas sensors. Solid State Ion 134:43–50

    Article  CAS  Google Scholar 

  26. Riegel J, Neumann H, Wiedenmann HM (2002) Exhaust gas sensors for automotive emission control. Solid State Ion 152–153:783–800

    Article  Google Scholar 

  27. Wilk GD, Wallace RM, Anthony JM (2000) Hafnium and zirconium silicates for advanced gate dielectrics. J Appl Phys 87:484–492

    Article  CAS  Google Scholar 

  28. Qi WJ, Nieh R, Lee BH, Kang LG, Jeon Y, Lee JC (2000) Electrical and reliability characteristics of ZrO2 deposited directly on Si for gate dielectric application. Appl Phys Lett 77:3269–3271

    Article  CAS  Google Scholar 

  29. Collins AH (1976) Microbiological methods, 4th edn. Butterworth, London

    Google Scholar 

  30. Cruickshank R, Duguid JP, Swain RHA, Marmion BP (1975) Medicinal microbiology, 12th edn. Churchill Livingstone, London, p 196

    Google Scholar 

  31. Khan ZK (1997) In vitro and vivo screening techniques for bioactivity screening and evaluation. In: Proceeding international workshop UNIDO-CDRI, pp 210–211

  32. Verma RS, Khan IK, Singh AP (1998) Antifungal agents: past, present, future, prospects. National Academy of Chemistry and Biology, Lucknow, p 55

    Google Scholar 

  33. Mustard D, Ritchie DW (2005) Docking essential dynamics eigen structures. Proteins Struct Funct Bioinform 60:269–274

    Article  CAS  Google Scholar 

  34. Delano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

  35. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-582 Wesley, London, p 102

    Google Scholar 

  36. Duval C (1963) Inorganic thermogravimetric analysis. Elsevier, Amsterdam, p 315

    Google Scholar 

  37. Rang A, Vangani V, Rakshit K (1997) Synthesis and characterization of some water soluble polymers. J Appl Polym Sci 66:45–56

    Article  Google Scholar 

  38. Abthagir PS, Saraswathi R, Sivakolunthu S (2004) Aging and thermal degradation of poly (N-methylaniline). J Therm Chim Acta 411:109–123

    Article  CAS  Google Scholar 

  39. Mispa KJ, Subramaniam P, Murugesan R (2013) Studies on ion-exchange properties of polyaniline Zr(IV) Tungstoiodophosphate nanocomposite ion exchanger. J Polym. doi:10.1155/2013/356058

    Google Scholar 

  40. Nabi SA, Shahadat M, Bushra R, Oves M, Ahmed F (2011) Synthesis and characterization of polyaniline Zr(IV)sulphosalicylate composite and its applications (1) electrical conductivity and (2) antimicrobial activity studies. Chem Eng J 173:706–714

    Article  CAS  Google Scholar 

  41. Yang G, Wu FZ, Wang L, Fi LN, Tina X (1997) Study of interaction between novel Ruthenium(II)-pyridyl complexes and calf thymus DNA. J Inorg Biochem 66:141–144

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the help of Chairman, Department of Chemistry, A.M.U., Aligarh, for providing necessary research facilities, UGC for financial support in the form of research fellowship and DST for instrumental facilities under SAP (DRS-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meraj Alam Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A., Dar, A.M. & Arsalan, M. Fabrication and Characterization of Polyaniline Based Nano-Composite with Their Physico-Chemical and Environmental Applications. J Polym Environ 25, 717–727 (2017). https://doi.org/10.1007/s10924-016-0850-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0850-z

Keywords

Navigation