Skip to main content
Log in

Development of Bioactive Packaging Structure Using Melt Electrospinning

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Recent research attention is shifting towards the use of bioactive antimicrobial and/or antioxidant packaging materials and their fabrication with non-toxic techniques. The process of melt electrospinning produce fibers from polymer melt without any solution hence environmentally friendly because use of toxic solvents can be avoided. The objectives of this study were fabrication of biodegradable polymeric microfibrous structure using melt electrospinning and characterization of the effect of plant based natural extract on fabricated structure. We found that incorporation of this structure with natural extract provide sufficient support for bioactive compounds without changing thermal stability, physical properties and amorphous phase and also increase the antimicrobial efficacy. Moreover, homogeneously dispersion and good interaction of polymer and natural plant based extract demonstrating the potential of such polymer blend as a bioactive antimicrobial material for packaging industry including especially food and healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Siripatrawan U, Noipha S (2012) Food Hydrocoll 27:102–108

    Article  CAS  Google Scholar 

  2. Bonami L, Van Camp W, Van Rijckegem D, Du Prez FE (2009) Macromol Rapid Commun 30:34–38

    Article  CAS  Google Scholar 

  3. Hua X, Azlin M, Juhee A (2008) J Food Hyg Saf 23:68–72

    Google Scholar 

  4. Davidson PM, Naidu AS (2000) Phyto-phenols. In: Naidu AS (ed) Natural food antimicrobial systems. CRC Press, Boca Raton, pp 265–294

    Google Scholar 

  5. Ahn J, Gruen IU, Mustapha A (2007) Food Microbiol 24:7–14

    Article  CAS  Google Scholar 

  6. Ahn J, Grün IU, Mustapha A (2004) J Food Prot 67:148–155

    CAS  Google Scholar 

  7. Elgayyar M, Draughon FA, Golden DA, Mount JR (2001) J Food Prot 64:1019–1024

    CAS  Google Scholar 

  8. Juven BJ, Kanner J, Schved F, Weisslowicz H (1994) J Appl Bacteriol 76:626–631

    Article  CAS  Google Scholar 

  9. Pandit VA, Shelef LA (1994) Food Microbiol 11:57–63

    Article  Google Scholar 

  10. Do JR, Kang SN, Kim KJ, Jo JH, Lee SW (2004) Food Sci Biotechnol 13:640–645

    Google Scholar 

  11. Coma V (2008) Meat Sci 78:90–103

    Article  CAS  Google Scholar 

  12. Ponce AG, Roura SI, Del Valle CE, Moreiraa MR (2008) Postharvest Biol Technol 49:294–300

    Article  CAS  Google Scholar 

  13. Abdollahi M, Rezaei M, Farzi G (2012) J Food Eng 111:343–350

    Article  CAS  Google Scholar 

  14. Mastromatteo M, Barbuzzi G, Conte A, Del Nobile MA (2009) Innov Food Sci Emerg Technol 10:222–227

    Article  CAS  Google Scholar 

  15. Krittika N, Kim KM, Ryu GH (2010) J Food Eng 98:377–384

    Article  Google Scholar 

  16. Gómez-Estaca J, Bravo L, Gómez-Guillén MC, Alemán A, Montero P (2009) Food Chem 112:18–25

    Article  Google Scholar 

  17. Seydim AC, Sarikus G (2006) Food Res Int 39:639–644

    Article  CAS  Google Scholar 

  18. Karagöz Emiroğlu Z, Polat Yemiş G, Betül Kodal Coşkun B, Candoğan K (2010) Meat Sci 86:283–288

    Article  Google Scholar 

  19. Appendini P, Joseph HH (2002) Innov Food Sci Emerg Technol 2:113–126

    Article  Google Scholar 

  20. Sanchez-Garcia MD, Ocio MJ, Gimenez E, Lagaron JM (2008) J Plast Film Sheet 24:239–251

    Article  CAS  Google Scholar 

  21. Baumgarten PK (1971) J Colloid Interface Sci 36:71–79

    Article  CAS  Google Scholar 

  22. Larrondo L, Manley RSJ (1981) J Polym Sci Polym Phys 19:909–920

    Article  CAS  Google Scholar 

  23. Reneker DH, Chun I (1996) Nanotechnology 7:216–223

    Article  CAS  Google Scholar 

  24. Formhals A. U.S. patent no. 1,975,504, filed 1934

  25. Agarwal S, Wendorff JH, Andreas G (2008) Polymer 49(26):5603–5621

    Article  CAS  Google Scholar 

  26. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Biomaterials 25(7–8):1289–1297

    Article  CAS  Google Scholar 

  27. Feng JJ (2002) Phys Fluids 14(11):3912–3926

    Article  CAS  Google Scholar 

  28. Lyons J, Li C, Ko F (2004) Polymer 45(22):7597–7603

    Article  CAS  Google Scholar 

  29. Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Polymer 40(26):7397–7407

    Article  CAS  Google Scholar 

  30. Dalton PD, Grafahrend D, Klinkhammer K, Klee D, Moller M (2007) Polymer 48(23):6823–6833

    Article  CAS  Google Scholar 

  31. Ko J, Mohtaram NK, Ahmed F, Montgomery A, Carlson M, Lee PCD, Willerth SM, Jun MBG (2014) J Biomater Sci Polym Ed 25(1):1–17

    Article  CAS  Google Scholar 

  32. Lyons JM (2004) Thesis, Doctor of Philosophy

  33. Megelski S, Stephens JS, Bruce CD, Rabolt JF (2002) Macromolecules 35(22):8456–8466

    Article  CAS  Google Scholar 

  34. Park SH, Kim TG, Kim HC, Yang DY, Park TG (2008) Acta Biomater 4(5):1198–1207

    Article  CAS  Google Scholar 

  35. Miltz J, Rydlo T, Mor A, Polyakov V (2006) Int J Packag Technol Sci 6:345–354

    Article  Google Scholar 

  36. Dash TK, Konkimalla VB (2012) J Control Release 158(1):15–33

    Article  CAS  Google Scholar 

  37. Muñoz-Bonilla A, Cerrada ML, Fernández-García M, Kubacka A, Ferrer M, Fernández-García M (2013) Int J Mol Sci 14:9249–9266

    Article  Google Scholar 

  38. Eberhart RC, Su SH, Nguyen KT, Zilberman M, Tang L, Nelson KD, Frenkel P (2003) J Biomater Sci Polym Ed 14:299–312

    Article  CAS  Google Scholar 

  39. Özcan MM, Arslan D (2011) Food Chem 129:171–174

    Article  Google Scholar 

  40. Zhang H, Kong B, Xiong YL, Sun X (2009) Meat Sci 81:686–692

    Article  CAS  Google Scholar 

  41. Gutierrez J, Barry-Ryan C, Bourke P (2008) Int J Food Microbiol 124:91–97

    Article  CAS  Google Scholar 

  42. Giteru SG, Coorey R, Bertolatti D, Watkin E, Johnson S, Fang Z (2015) Food Chem 168:341–347

    Article  CAS  Google Scholar 

  43. Alboofetileh M, Rezaei M, Hosseini H, Abdollahi M (2014) Food Control 36:1–7

    Article  CAS  Google Scholar 

  44. Gan R (2010) Food Saf 20:1–4

    Google Scholar 

  45. Milovac D, Ferrer GG, Ivankovic M, Ivankovic H (2014) Mater Sci Eng C 34:437–445

    Article  CAS  Google Scholar 

  46. Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) J Colloid Interface Sci 273:381–387

    Article  CAS  Google Scholar 

  47. Wang Z, Zheng L, Li C, Zhang D, Xiao Y, Guan G, Zhu W (2013) Carbohydr Polym 94:505–510

    Article  CAS  Google Scholar 

  48. Hubackova J, Dvorackova M, Svoboda P, Mokrejs P, Kupec J, Pozarova I, Alexy P, Bugaj P, Machovsky M, Koutny M (2013) Polym Test 32:1011–1019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Department of Fiber and Polymer, Bursa Technical University, Bursa, Turkey for allowing to use their lab facilities. Also, authors acknowledge financial support of Discovery and Engage programs of Natural Science and Engineering Research Council of Canada (NSERC). Also, we are really thankful to Dr. Mehmet Orhan, Uludag University, Engineering Faculty, Textile Engineering Department, 16059 Nilufer BURSA, Turkey for Antimicrobial testing facilities in Microbiology Laboratory of Uludağ University Medical Faculty.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhwinder Kaur Bhullar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhullar, S.K., Kaya, B. & Jun, M.BG. Development of Bioactive Packaging Structure Using Melt Electrospinning. J Polym Environ 23, 416–423 (2015). https://doi.org/10.1007/s10924-015-0713-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-015-0713-z

Keywords

Navigation