Skip to main content
Log in

Production, Characterization and Physico-mechanical Properties of Bacterial Cellulose from Industrial Wastes

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In the current study, two different alternative media including black strap molasses (BSM) and molasses from condensation unit of brewery industry (MB) were evaluated for production of bacterial cellulose (BC) in comparison to chemically defined Hestrin–Schramm (HS) medium as a control under static and shaking conditions. In static culture, the BC production was 2.90, 1.74, 2.41 g/l for BSM, MB and HS media, respectively after 9 days of cultivation. The production slightly increased to 3.05, 1.78, 2.49 g/l for BSM, MB and HS media, respectively under shaking conditions after 9 days. The chemical structure of BC samples was confirmed through FTIR and XRD analysis. FE-SEM analysis revealed slightly loose fibril arrangement in BSM–BC and MB–BC compared to HS–BC. Water holding capacity was in order of BSM–BC > MB–BC > HS–BC. The mechanical and thermal properties of BSM–BC and MB–BC were slightly lower than the HS–BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP (1995) Proc Natl Acad Sci 92:9353

    Article  CAS  Google Scholar 

  2. Delmer DP (1999) Annu Rev Plant Physiol Plant Mol Biol 50:245

    Article  CAS  Google Scholar 

  3. Kim JY, Kim JN, Wee YJ, Park DH, Ryu HW (2007) Appl Biochem Biotechnol 137:529

    Google Scholar 

  4. Rani MU, Appaiah KAA (2013) J Food Sci Technol 50:755

    Article  CAS  Google Scholar 

  5. Whistler RL, BeMiller JN (1997) Starch. Carbohydrate chemistry for food scientists. Eagan Press, St. Paul, pp 117–151

    Google Scholar 

  6. Khan T, Park JK, Kwon J-H (2007) Korean J Chem Eng 24:816

    Article  CAS  Google Scholar 

  7. Ul-Islam M, Shah N, Ha JH, Park JK (2011) Korean J Chem Eng 28:1736

    Article  CAS  Google Scholar 

  8. Bielecki S, Krystynowicz A, Turkiewicz M, Kalinowska H (2002) Bacterial cellulose. In: Vandamme EJ, De Baets S, Steinbuechel A (eds) Biopolymers. Wiley-VCH, Weinheim, pp 37–90

    Google Scholar 

  9. Ross P, Mayer R, Benziman M (1991) Microbiol Rev 55:35

    CAS  Google Scholar 

  10. Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) J Mater Sci 24:3141

    Article  CAS  Google Scholar 

  11. Yoshinaga F, Tonouchi N, Watanabe K (1997) Biosci Biotechnol Biochem 61:219

    Article  CAS  Google Scholar 

  12. Klemm D, Schumann U, Udhardt U, Marsch S (2001) Prog Polym Sci 26:1561

    Article  CAS  Google Scholar 

  13. Ul-Islam M, Khan T, Park JK (2012) Carbohydr Polym 88:596

    Article  CAS  Google Scholar 

  14. Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Biomaterials 27:145

    Article  CAS  Google Scholar 

  15. Iguchi M, Yamanaka S, Budhiono A (2000) J Mater Sci 35:261

    Article  CAS  Google Scholar 

  16. Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P (1998) Polym Degrad Stabil 59:93

    Article  CAS  Google Scholar 

  17. Ul-Islam M, Khan T, Park JK (2012) Carbohydr Polym 89:1189

    Article  CAS  Google Scholar 

  18. Kongruang S (2008) Appl Biochem Biotechnol 148:245

    Article  CAS  Google Scholar 

  19. Bae S, Sugano Y, Shoda M (2004) J Biosci Bioeng 97:33

    Article  CAS  Google Scholar 

  20. Çoban EP, Biyik H (2011) Afr J Microbiol Res 5:1037

    Google Scholar 

  21. El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghawas DE (2008) Bioresources 3:1196

    CAS  Google Scholar 

  22. Moon SH, Park JM, Chun HY, Kim SJ (2006) Biotechnol Bioprocess Eng 11:26

    Article  CAS  Google Scholar 

  23. Shoda M, Sugano Y (2005) Biotechnol Bioprocess Eng 10:1

    Article  CAS  Google Scholar 

  24. Keshk S, Sameshima K (2006) Appl Microbiol Biotechnol 72:291

    Article  CAS  Google Scholar 

  25. Park JK, Hyun SH, Ahn WS (2006) Korean Chem Eng Res 44:52

    CAS  Google Scholar 

  26. Di Blasi C, Tanzi V, Lanzette M (1997) Biomass Bioenergy 12:321

    Article  Google Scholar 

  27. Mahar A, Malik RN, Qadir A, Ahmed T, Khan Z, Khan MA (2007) Review and analysis of current solid waste management situation in urban areas of Pakistan. Proceedings of the International Conference on Sustainable Solid Waste Management. 5–7 September, Chennai, India. pp 34–41

  28. Ioannidou O, Zabaniotou A (2007) Renew Sustain Energy Rev 11:1966

    Article  CAS  Google Scholar 

  29. Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) J Appl Microbiol 107:576

    Article  CAS  Google Scholar 

  30. Bae SO, Shoda M (2005) Appl Microbiol Biotechnol 67:45

    Article  CAS  Google Scholar 

  31. Ha JH, Shehzad O, Khan S, Lee SY, Park JW, Khan T, Park JK (2008) Korean J Chem Eng 25:812

    Article  CAS  Google Scholar 

  32. Chen HP, Brown RM Jr (1998) Cellulose 5:263

    Article  CAS  Google Scholar 

  33. Shezad O, Khan S, Khan T, Park JK (2010) Carbohydr Polym 82:173

    Article  CAS  Google Scholar 

  34. Borzani W, Souza SJ (1995) Biotechnol Lett 17:1271

    Article  CAS  Google Scholar 

  35. Hestrin S, Schramm M (1954) Biochem J 58:345

    CAS  Google Scholar 

  36. Masaoka S, Ohe T, Sakota N (1993) J Ferment Bioeng 75:18

    Article  CAS  Google Scholar 

  37. Ha JH, Shah N, Ul-Islam M, Khan T, Park JK (2011) Process Biochem 46:1717

    Article  CAS  Google Scholar 

  38. Kawano S, Shoji S, Ichiose S, Yamagata K, Tagami M, Hiraoka M (2002) Cell Calcium 32:165

    Article  CAS  Google Scholar 

  39. Suwannapinunt N, Burakorn J, Thaenthanee S (2007) Suranaree J Sci Technol 14:357

    Google Scholar 

  40. Watanabe K, Yamanaka S (1995) Biosci Biotechnol Biochem 59:65

    Article  CAS  Google Scholar 

  41. Cannon RE, Anderson SM (1991) Crit Rev Microbiol 17:435

    Article  CAS  Google Scholar 

  42. Shezad O, Khan S, Khan T, Park JK (2009) Korean J Chem Eng 26:1689

    Article  CAS  Google Scholar 

  43. Krystynowicz A, Koziołkiewicz M, Wiktorowska-Jezierska A, Bielecki S, Klemenska E, Masny A, Płucienniczak A (2005) Acta Biochim Pol 52:691

    CAS  Google Scholar 

  44. Park JK, Jung JY, Park YH (2003) Korean J Biotechnol Bioeng 18:127

    Google Scholar 

  45. Chao Y, Mitarai M, Sugano Y, Shoda M (2001) Biotechnol Prog 17:781

    Article  CAS  Google Scholar 

  46. Okajima K, Matsuda Y, Kamide K (1991) Polym Int 25:145

    Article  CAS  Google Scholar 

  47. Ul-Islam M, Khattak WA, Ullah MW, Khan S, Park JK (2014) Cellulose 21:433

    Article  CAS  Google Scholar 

  48. Darder M, Colilla M, Ruiz-Hitzky E (2003) Chem Mater 15:3774

    Article  CAS  Google Scholar 

  49. Li SM, Jia N, Zhu JF, Ma MG, Sun RC (2010) Carbohydr Polym 80:270

    Article  CAS  Google Scholar 

  50. Ul-Islam M, Khattak WA, Kang M, Kim SM, Khan T, Park JK (2013) Cellulose 20:253

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taous Khan or Joong Kon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattak, W.A., Khan, T., Ul-Islam, M. et al. Production, Characterization and Physico-mechanical Properties of Bacterial Cellulose from Industrial Wastes. J Polym Environ 23, 45–53 (2015). https://doi.org/10.1007/s10924-014-0663-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0663-x

Keywords

Navigation