Skip to main content
Log in

Polyhydroxybutyrate Accumulation in Bacillus megaterium and Optimization of Process Parameters Using Response Surface Methodology

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The accumulation of polyhydroxybutyrate of Bacillus megaterium is growth associated and significantly dependent on carbon sources. In the present investigation B. megaterium strain isolated from soil was studied for PHB production in fructose minimal media. The PHB production was found to be growth associated. The polymer production by the strain was found to vary from 24 to 48 % content (w/w) of the dry cell weight. Box Bohn design was used to study the interactive effect of four variables on cell growth and PHB production. The optimized medium conditions with the constrain to maximize cell growth and PHB content were glucose 4.32 g/L, Mannitol 4.52 g/L and Na succinate 3.45 g/L and PHB yield 1.38 g/L amounting to 49 % of dry cell weight which is more than 1.8 folds the basal medium. The polymer production by the strain was found to vary from 12.18 to 57.2 % content (w/w) of the dry cell weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aarthi N, Ramana KV (2011) Int J Environ Sci 1:744–775

    CAS  Google Scholar 

  2. Anderson AJ, Dawes EA (1990) Microbiol Rev 54:450–472

    CAS  Google Scholar 

  3. Adwitiya P, Prabhu A, Kumar A, Rajagopal B, Dadhe K, Ponnamma V, Shivakumar S (2009) Polish J Microbiol. 58:149–154

    Google Scholar 

  4. Benoit TG, Wilson GR, Baugh CL (1990) Lett Appl Microbiol 10:15–18. doi:10.1111/j.1472-765X.1990.tb00084.x

    Article  CAS  Google Scholar 

  5. Borah B, Thakur PS, Nigam JN (2002) J Appl Microbiol 92:776–783. doi:10.1046/j.13652672.2002.01590

    Article  CAS  Google Scholar 

  6. Poirier Y, Nawath C, Someville C (1995) Plant Biotechnol 13:142–150

    CAS  Google Scholar 

  7. Steinbüchel A, Fuchtenbusch B (1998) Trends Biotechnol 16:419–427

    Article  Google Scholar 

  8. Tajima K, Igari T, Nishimura D, Nakamura M, Satoh Y, Munekata M (2003) J Biosci Bioeng 95:7781

    Google Scholar 

  9. Wu Q, Huang H, Hu G, Chen J, Ho KP, Chen GQ (2001) Antonie van Leewenhoek 80:111–118. doi:10.1023/A:1012222625201

    Article  CAS  Google Scholar 

  10. Labuzeck S, Radecka I (2001) J Appl Microbiol 90:353–357

    Article  Google Scholar 

  11. Belma AY, Zehra N, Yavuz B (2002) Turk E J Biotechnol Special issue: 24

  12. Reddy VST, Mahmood KS (2009) World J Microbiol Biotechnol 25:391–397

    Google Scholar 

  13. Ojumu TV, Yu J, Solomon BO (2004) Af J Biotechnol 3:18–24

    CAS  Google Scholar 

  14. Pal A, Ramana KV, Bawa AS (2010) J Food Sci Technol 47:254–261

    Google Scholar 

  15. Chen GO, Wu Q (2005) Biomaterials 26:6556–6657

    Google Scholar 

  16. Mokhtari-Hosseini ZA, Vasheghani-Farahani E, Heidarzadeh-Vazifekhoran A, Shojaosadati SA, Karimzadeh R, Darani KK (2009) Bioresour Technol 100:2436–2443

    Article  CAS  Google Scholar 

  17. Mu W, Chen C, Li X, Zhang T, Jiang B (2009) Bioresour Technol 100:1366–1370

    Article  CAS  Google Scholar 

  18. Belma AY, Zehra N, Yavuz B (2002). Turk E J Biotechnol Special issue: 24–30

  19. Box GEP, Behnken DW (1960) Technometrics 2:455–475

    Article  Google Scholar 

  20. Hong K, Sun S, Tian W, Chen GQ, Huang W (1999) Appl Microbiol Biotechnol 51:52

    Article  Google Scholar 

  21. Valappil SP, Peiris D, Langley GJ, Herniman JM, Boccaccini AR, Bucke C, Roy I (2007) J Biotechnol 127:475–487

    Article  CAS  Google Scholar 

  22. Page WJ (1992) Appl Microbiol Biotechnol 38:1117–1121

    Article  Google Scholar 

  23. Halami PM (2008) World J Microbiol Biotechnol 24:805812

    Google Scholar 

  24. Otari SV, Ghosh SJ (2009) Cur Res J Biol Sci 1(2):23–26

    CAS  Google Scholar 

  25. Pandian RS, Deepak V, Kalishwaralal K, Rameshkumar N, Jeyaraj M, Gurunathan S (2010) Bioresour Technol 101:705–711

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limpon Bora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bora, L. Polyhydroxybutyrate Accumulation in Bacillus megaterium and Optimization of Process Parameters Using Response Surface Methodology. J Polym Environ 21, 415–420 (2013). https://doi.org/10.1007/s10924-012-0529-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0529-z

Keywords

Navigation